


# 3-phase Induction Motor TM21 Series

# **Instruction Manual**



## CONTENTS

| No. | TITLE                                              | PAGE |
|-----|----------------------------------------------------|------|
|     | Introduction                                       | 3    |
|     | Safety precautions                                 | 3    |
| 1.  | How to interpret the nameplates                    | 11   |
| 1.1 | Type, Frame number                                 | 11   |
| 1.2 | Poles, Rated speed, Rated frequency                | 11   |
| 1.3 | Rated output, Rated voltage, Rated current         | 11   |
| 1.4 | Rating                                             | 12   |
| 1.5 | Max. ambient temperature, Altitude                 | 12   |
| 1.6 | Thermal class                                      | 12   |
| 1.7 | Standard, Protection degree, Cooling method        | 12   |
| 1.8 | Serial number, Manufactured in                     | 12   |
| 2.  | Acceptance inspection                              | 13   |
| 3.  | Storage                                            | 14   |
| 4.  | Installation                                       | 16   |
| 4.1 | Attention at motor transportation                  | 16   |
| 4.2 | Attention of installation place                    | 18   |
| 4.3 | Design and construction of foundation              | 20   |
| 4.4 | Installation of motor                              | 20   |
| 4.5 | Grouting                                           | 21   |
| 4.6 | Centering and alignment                            | 21   |
| 4.7 | End play and burnout prevention of sleeve bearings | 23   |
| 4.8 | Insulation for prevention of shaft current         | 24   |
| 4.9 | Piping                                             | 25   |
| 5.  | Wiring                                             | 27   |
| 5.1 | Attention at wiring                                | 27   |
| 5.2 | Procedure of wiring                                | 27   |
| 5.3 | Connenction                                        | 28   |
| 5.4 | Grounding (Earth)                                  | 28   |
| 5.5 | Terminal connection in auxiliary terminal boxes    | 28   |
| 5.6 | Precaution at inverter drive                       | 29   |
| 6.  | Preparations and inspections before trial run      | 32   |
| 6.1 | Measurement of insulation resistance               | 32   |
| 6.2 | Inspection of wiring                               | 32   |
| 6.3 | Inspection of grounding wires                      | 32   |
| 6.4 | Bearings                                           | 32   |

| 6.5  | Lubr     | cant                                         |
|------|----------|----------------------------------------------|
| 6.6  | With     | stand voltage test                           |
| 6.7  | Othe     | rs                                           |
| 7.   | Implem   | entation of trial run                        |
| 7.1  | Solo     | run tests                                    |
| 7.2  | Direc    | ct coupled tests                             |
| 8.   | Normal   | operation                                    |
| 8.1  | At st    | arting                                       |
| 8.2  | At ru    | nning                                        |
| 9.   |          | nance                                        |
| 9.1  |          | ents of inspection                           |
| 9.2  |          | val of periodic inspection                   |
| 9.3  | Majo     | r inspection items                           |
| 9.4  | Com      | missioning after inspection                  |
| 10.  | Trouble  | shooting                                     |
| 11.  | Replace  | ement parts                                  |
| 12.  | Disposa  | al                                           |
| 13.  | Instruct | ion of disassembly and reassembly            |
| 13.1 |          | zontal motor with sleeve bearings            |
| 13.2 |          | zontal motor with antifriction bearings      |
| 13.3 |          | cal motor with angular ball bearing          |
| 13.4 |          | cal motor with spherical roller bearing      |
| 14.  | Supple   | mentary knowledge for maintenance inspection |
| 14.1 | Start    | ing duty                                     |
| 14.2 | Tem      | perature rise limit                          |
| 14.3 |          | ation resistance                             |
| 14.4 | Vibra    | ation                                        |
| 14.5 | Nois     | e                                            |
| 14.6 | Influe   | ence of power supply variation               |
| 14.7 | Influe   | ence of unbalanced voltage in power source   |
| Appe | ndix 1   | Conditions at acceptance                     |
| Appe | ndix 2   | Check sheet of installation                  |
| Appe | ndix 3   | Check sheet before trial run                 |
| Appe | ndix 4   | Check sheet at trial run                     |
| Appe | ndix 5   | Records during operation                     |
|      |          |                                              |

2

## Introduction

Thank you very much for purchasing our motor (or generator). This manual has been published to ensure safe and efficient use of the motor (generator). Please be sure to read through this manual carefully as it has been prepared to provide you with a full knowledge of installation, operation, maintenance and inspection.

Although the part mainly indicated as a "motor" is in this manual, it can be read as a "generator", if you purchased an induction generator.

## Safety precautions

This instruction manual and the labels on the motor itself contain important safety information designed to prevent equipment damage and injury to the work personnel who transport, install, maintain, inspect and use the equipment and other persons. Make sure that you have read and thoroughly understood the following information (regarding the types of warning labels and the safety symbols) before reading the rest of the manual.

- In addition to an instruction manual, be sure to read the caution labels and the instruction name plates attached on the motor (generator) body before use. Keep these labels and name plates in the good condition to be always able to read, and never peel or remove them. Please contact to our company when the labels or name plates become blurred or damaged.
- Keep this manual carefully after reading it, and use it suitably when the equipment is operated.
- Be sure to include this manual when coupling the motor (generator) with another machine and delivering it to the end user or reselling it to other user.

#### [Qualification of operating personnel]

- Only qualified persons are to install, operate, or service this motor according to all applicable codes and established safety practices.
- Please perform even the work which is not regulated legally under lead of the expert who understands a motor (generator) and is skilled.
- Please wear the defined protector (long sleeve working clothes, safety belt, helmet, safety shoes, glove) at the time of work.

### [Indication and explanation of graphic symbol]

The important content is indicated on the product and in this manual, in order to prevent the harm to those who use, or other men, and damage of property and to use the product safely and correctly.

Please read the text and follow the items mentioned in this manual after understanding the following content (indication and graphic symbol) well.

Moreover, be sure to read the operation manual instruction of related apparatus and parts.



: Indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.



: Indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.



: Indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

CAUTION Since

items also include the important content, please follow them.

In this manual, the following three kinds of graphic symbols are indicated to distinguish the meaning of "Warning," "Prohibited," or "Mandatory."





Prohibited action (one that must not be done)

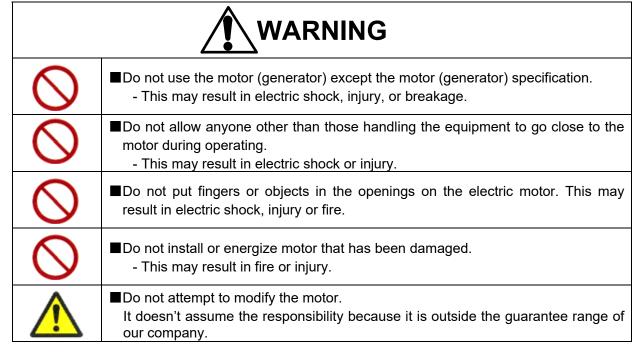


: Mandatory action (one that must be done)

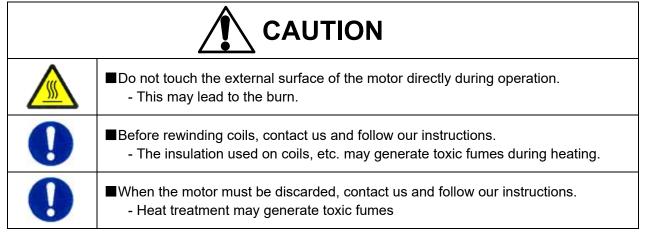
## [About a disclaimer]

- Our company does not take the liability to the damage produced by a fire, an earthquake, an action by the third party, other accidents, the intention or negligence by the user, misuse, and operation under unusual conditions.
- ■Our company does not take any liability about the collateral damage (loss of business advantage, interruption of business, etc.) produced from use or out of order of this product.
- ■Our company does not take any liability about installation, handling, or the damage produced by usage, which has not been explained in the manual.
- ■Our company does not take any liability about the damage produced by the combination of connection apparatus.

## [Confirmation of caution labels]


Please confirm that the warning/caution labels are displayed on the designation part (refer to fig. 1-1 on page 10 or a submission drawing). If the label has been lost or hard to see by stain, please contact with our company.

|            | <ul> <li>The use of electrical equipment in hazardous locations is restricted. For these areas, an explosion-proof type motor (generator) should be used.</li> <li>Failure to do this may result in explosion or fire.</li> </ul>                                                              |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A          | <ul> <li>Before any work is started on the machines, particularly before covers are<br/>removed from live parts, make sure that the machine has been correctly<br/>disconnected from the power supply.</li> <li>Conducting operations with live wires may result in electric shock.</li> </ul> |
|            | <ul> <li>If a water cooler is used to cool the motor (generator), the cooling water shall be<br/>flow by specified temperature and flow rate.</li> <li>Failure to do this may result in overheating and lead to fire.</li> </ul>                                                               |
| 0          | <ul> <li>Use lifting lugs (*) of frame when lifting a motor.</li> <li>Using the lifting lugs of a cover of terminal boxes or a heat exchanger may result in falling of a motor and it may cause an injury.</li> <li>* Please refer to a "submission drawing" for details.</li> </ul>           |
|            | <ul> <li>Please use adequate handling equipment corresponding to the mass indicated in<br/>the submission drawing or name plate.</li> <li>This may cause the motor to fall, resulting in injury.</li> </ul>                                                                                    |
|            | <ul> <li>Put wood or thick cloth between the housing or covers and the ropes to protect the housing of the motor and wire ropes.</li> <li>Failure to this may cause a motor to fall by damage or cut of the wire ropes, and this may results in injury.</li> </ul>                             |
| $\bigcirc$ | <ul> <li>Never enter the area directly beneath the motor while it is being hoisted.</li> <li>You may be seriously injured if the motor should fall.</li> </ul>                                                                                                                                 |
| $\bigcirc$ | Motor should be lifted itself Failure to this may cause a motor to fall, resulting in injury.                                                                                                                                                                                                  |


| •          | <ul> <li>Be sure to remove the protective device for transportation before a trial run</li> <li>Failure to do this may result in overheating of the motor or breakage of the device, and they may cause burnout or injury.</li> <li>Depending on a motor, since the protective devices are attached not only on DE-side but also on NDE-side, please check and remove them before trial-run.</li> <li>The device should be attached at the time of re-transportation of the motor.</li> </ul> |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | <ul> <li>The key which is temporary attached on a motor shaft should be removed before trial run.</li> <li>Failure to this may cause scattering of a key, resulting in injury.</li> </ul>                                                                                                                                                                                                                                                                                                     |
| 0          | <ul> <li>Install the motor in a proper location that matches the operating conditions (temperature, humidity, etc.) noted in specifications.</li> <li>Failure to do this may result in fire or electric shock.</li> </ul>                                                                                                                                                                                                                                                                     |
|            | <ul> <li>When working at elevations of more than 1.5 meters, be sure to wear a safety belt.</li> <li>If you fail to do this, you may fall and be injured.</li> </ul>                                                                                                                                                                                                                                                                                                                          |
| 0          | <ul> <li>Rope off the work area to prevent people other than work personnel from entering.</li> <li>Failure to do this may result in people suffering electric shock or becoming caught in the machinery.</li> </ul>                                                                                                                                                                                                                                                                          |
| 0          | <ul> <li>Attach a ground relay or other suitable protective relay to the power source side<br/>and be sure to attach a ground line to the earthing terminal on the motor.</li> <li>Failure to ground the motor may result in electric shock in the event of current<br/>leakage.</li> </ul>                                                                                                                                                                                                   |
| e          | <ul> <li>Connect the earthing conductor to the earthing terminal of the motor.</li> <li>Without grounding may result in electric shock.</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
| $\bigcirc$ | <ul> <li>Please attach a cover for involution prevention at the coupling part connected to a machine.</li> <li>Without covering may result in injury.</li> </ul>                                                                                                                                                                                                                                                                                                                              |
|            | <ul> <li>Please check that the man approaches and is not in contact before a withstand voltage test and insulation resistance test. Provide an attention to nearby persons so that they don't approach and contact during the test.</li> <li>Test voltage may result in electric shock.</li> </ul>                                                                                                                                                                                            |
|            | <ul> <li>During the withstand voltage test, ground all coils to which voltage is not applied.</li> <li>Failure to ground these coils may cause current leakage, resulting in electric shock.</li> </ul>                                                                                                                                                                                                                                                                                       |
| 0          | ■Use a voltage changeable device for the withstand voltage test.<br>- Failure to do this may result in electric shock.                                                                                                                                                                                                                                                                                                                                                                        |
| 0          | <ul> <li>Use the tightening torque (*) specified when tightening bolts.</li> <li>If bolts are not tightened to the proper torque, they may break or may result in overheat and fire.</li> <li>* Please refer to Table 6-6 (page 39) for details.</li> </ul>                                                                                                                                                                                                                                   |

| 0          | <ul> <li>After a withstand voltage test, ground windings to discharge.</li> <li>Without discharging may result in electric shock.</li> </ul>                                                                                                                                                                                                                                                                                                                                    |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc$ | <ul> <li>Do not operate after removing or disabling protective fixtures and safety equipment (including lids and covers)</li> <li>This may result in electric shock or injury.</li> </ul>                                                                                                                                                                                                                                                                                       |
| $\bigcirc$ | ■Do not place flammable materials near the motor They may ignite and burnout.                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | <ul> <li>Shut down all power sources before starting periodic inspection.</li> <li>Failure to do this may result in electric shock or injury.</li> <li>In order to prevent the misoperation during work, hang an "operation prohibition" tag on the opened circuit breaker.</li> </ul>                                                                                                                                                                                          |
| 0          | <ul> <li>In the event of a power outage, be sure to set the power switch to the OFF position.</li> <li>At the time of re-energizing, there is a possibility of electric shock or injury.</li> </ul>                                                                                                                                                                                                                                                                             |
| 0          | <ul> <li>When using a source of flame with the bearing section dismantled, be careful of the following:</li> <li>Wipe away any lubricant from the bearings.</li> <li>Be sure to protect the bearing section from being heated.</li> <li>Use sources of flame only in places where there is no danger of fire.</li> <li>Do not use heaters, cigarettes or other general sources of flame near the bearing section.</li> <li>Failure to do these may result in a fire.</li> </ul> |
|            | <ul> <li>For motors equipped with filters, clean the filter periodically.</li> <li>Filter clogging may result in overheating and burnout.</li> </ul>                                                                                                                                                                                                                                                                                                                            |
| 0          | <ul> <li>Do not approach or touch to a rotating or live part at the visual inspection around brush.</li> <li>This may result in electric shock or injury.</li> </ul>                                                                                                                                                                                                                                                                                                            |

| WARNING    |                                                                                                                                                                                                                                 |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0          | <ul> <li>Only qualified persons are to carry out the transportation, installation, piping, wiring, operation, maintenance, and inspection.</li> <li>Failure to do this may result in electric shock, injury or fire.</li> </ul> |  |
| $\bigcirc$ | <ul> <li>Do not touch high-voltage electrical circuits and rotating parts.</li> <li>This may result in electric shock or injury.</li> </ul>                                                                                     |  |



| 0          | <ul> <li>During installation and maintenance, always wear long-sleeved work clothes, safety belts, protective goggles and other designated protective gear.</li> <li>If you fail to wear protective gear, you may suffer electric shock or become caught in the machinery.</li> </ul> |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <ul> <li>Wear gloves, etc., when touching machined or pressed components.</li> <li>As these parts often have sharp edges, touching them with unprotected hands may result in injury.</li> </ul>                                                                                       |
|            | <ul> <li>Be sure to perform daily and periodic maintenance and inspections.</li> <li>Failure to perform maintenance and inspections may prevent discovery of failures and errors and result in fire or electric shock.</li> </ul>                                                     |
| 0          | <ul> <li>Use the motor specifically designed for converter supply when your drive the motor with the inverter.</li> <li>Failure to do this may result in overheating, damage of insulation or fire.</li> </ul>                                                                        |
| $\bigcirc$ | ■Do not put obstacles so that name plates may always be visible.                                                                                                                                                                                                                      |
| $\bigcirc$ | ■Do not detach the nameplate.                                                                                                                                                                                                                                                         |
| $\bigcirc$ | <ul> <li>Do not operate the motor without being short-circuited of the current transformer's secondary terminals.</li> <li>This may arise a high voltage between the terminals and damage the CT.</li> </ul>                                                                          |



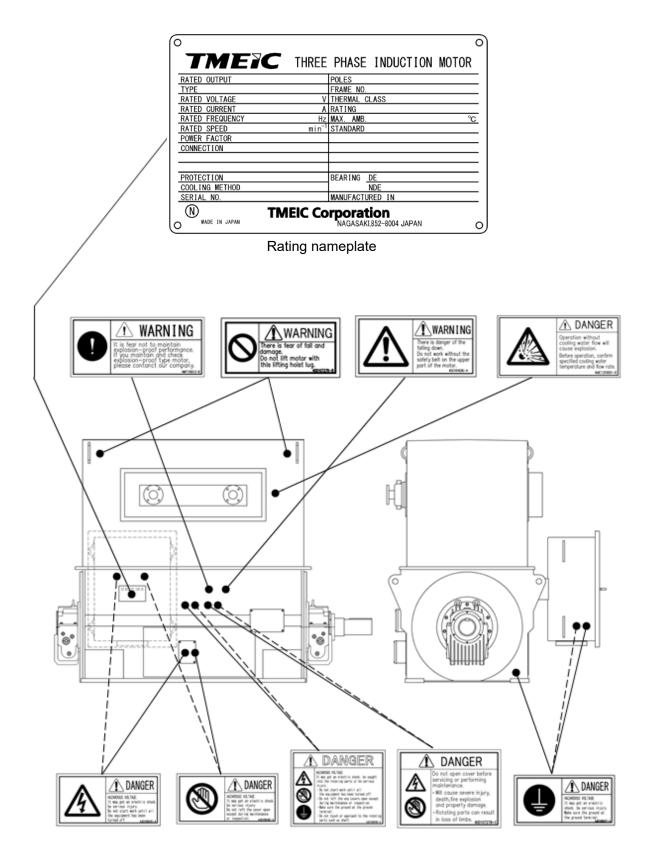



Fig.1-1 Position of name plates and warning labels (example)

## 1. How to interpret the nameplates

Every motor is fitted with a name plate containing the basic rating data according to relevant standards. A typical rating nameplate is shown in Fig. 1-2.

| 0               |                   |                         | 0     |
|-----------------|-------------------|-------------------------|-------|
| TMEIC           | THREE             | PHASE INDUCTION         | MOTOR |
| RATED OUTPUT    |                   | POLES                   |       |
| TYPE            |                   | FRAME NO.               |       |
| RATED VOLTAGE   | ٧                 | THERMAL CLASS           |       |
| RATED CURRENT   | A                 | RATING                  |       |
| RATED FREQUENCY | Hz                | MAX. AMB.               | S°    |
| RATED SPEED     | min <sup>-1</sup> | STANDARD                |       |
| POWER FACTOR    |                   |                         |       |
| CONNECTION      |                   |                         |       |
|                 |                   |                         |       |
|                 |                   |                         |       |
| PROTECTION      |                   | BEARING <u>DE</u>       |       |
| COOLING METHOD  |                   | NDE                     |       |
| SERIAL NO.      |                   | MANUFACTURED IN         |       |
| N T             | <b>MEIC Co</b>    | rporation               |       |
| O MADE IN JAPAN |                   | NAGASAKI,852-8004 JAPAN | 0     |

Fig. 1-2 Rating nameplate

In addition, auxiliary plates are attached depending on necessity. The interpretation of the rating nameplates is given below.

## 1.1 Type, Frame No.

The symbols specified by our company are described to indicate the electrical and mechanical characteristics of the motor.

## 1.2 Poles, Rated speed, Rated frequency

The number of North & South poles is determined by the stator coil connection and is indicated by P.

$$N = \frac{120 \times f}{P} \quad (min^{-1})$$

The power frequency in Hz is as f, the synchronous speed N (min<sup>-1</sup>) of the motor becomes: Before using the motor, be sure to check the power frequency against the frequency indicated on the rating nameplate.

At the rated load, rotational speed (full load speed) is slightly below the value indicated above and is indicated on the nameplate.

## 1.3 Rated output, Rated voltage, Rated current

The output is shown by the maximum shaft output power (P) in kW or HP at which the motor can be operated continuously.

The voltage is the value of the power source voltage (V). Rated current (A) is the value when the motor generates rated load under the rated voltage and frequency.

The relationship among these values is given by the following equation when the motor power factor (Pf) and efficiency ( $\eta$ ) are shown by %.

$$P = \frac{\sqrt{3} \cdot V \cdot I \cdot \eta \cdot Pf}{10^7} \quad (kW)$$

Before using the motor, be sure to check the power source voltage against the value indicated on the rating nameplate.

Operate the motor with current at or below the value indicated on the rating nameplate.

#### 1.4 Rating

This shows the kind of duty cycle the motor is designed for.

In the case of continuous duty or unspecified, the motor is capable of continuous running.

When the value is expressed by the hour or minute, the motor is capable of operation only for the time indicated on the rating nameplate. Run the motor again only the motor has cooled down.

#### 1.5 Max. Amb., Altitude

When unspecified, operate the motor with an air inlet temperature of 40°C or less, and with altitude below 1000 m. Operate the motor with the ambient temperature and altitude within the range specified on the rating nameplate. For water cooled motors, water inlet temperature will be indicated.

#### 1.6 Thermal class

This shows the insulation class.

As the value of temperature rise varies with the measuring method, refer to the conforming standard.

## 1.7 Standard, Protection, Cooling method

The specified standard will be applied. Otherwise, our standard is IEC 60034-1.

The protection type is specified as IPXX. The first characteristic indicates the degree of protection provided by the enclosure with respect to persons and also to the parts of the machine inside the enclosure. The second characteristic indicates the degree of protection provided by the enclosure with respect to harmful effects due to ingress of water.

The cooling method is specified as ICXX. For details, refer to the standard.

### 1.8 Serial No., Manufactured in

The serial No. is specified for each machine to permit finding the records of the machine. The manufacture indicates the year of completion of machine.

## 2. Acceptance inspection

Upon receipt of your motor, please take care of the following points. Use the check list shown in Appendix 1 at the time of acceptance.

- (1) We have already provided a packing list or an invoice with your motor. Check the motor against the invoice.
- (2) If there is breakage of packing, unpack immediately and investigate whether there are any abnormalities in the motor or other accessories. Take photos of the breakage, and inform to a carrier and our company.
- (3) First unpack carefully. Check each component for shipping damage.
- (4) Make sure that the output, voltage, frequency and model designation indicated on the rating nameplate comply with your ordering specifications.
- (5) Special shipping protectors are fitted on the bearing housing. To prevent damage to the bearings during transportation, the red painted bearing protective devices are attached on this motor. Refer to the attached caution card and remove the protectors. As there is case that this protective devices are not only attached on the drive end side bearing but also on the non-drive end side bearing, confirm certainly that the protective devices on the both bearings are removed before trial run.
- (6) Check the entire motor carefully for damage, rust parts, fouled parts and intrusion of harmful objects. If there is a doubtful point during the inspection, please contact to our company immediately with the required information filled in Appendix 1

## 3. Storage

## Notice

In order to maintain quality, install a motor in the place which fulfills storage conditions.
 Failure to this may result in performance degradation or damage.

#### (1) Temporary storage

If the motor remains in the packed condition for some time before installation, it should be kept in a dry place free from direct sunlight and drastic temperature change. It is recommended that storage is performed at 10-50 degrees C of atmospheric temperatures, and 75% or less of humidity.

After it is unpacked, the motor should be provided with careful protection until the installation is ready of from installation until it is put into actual service, to prevent damage due to moisture, contaminants, entry of foreign objects, insects, etc., physical abuses, tampering or violence.

If the motor is stored at a place where the ambient temperature changes sharply, its metallic surfaces are sure to sweat and corrode by the decreasing of temperature.

The motor windings are sometimes subjected to the reduction of insulation resistance due to moisture absorption, and metallic surfaces such as cores, terminal box, etc. may rust due to condensation during storage, if proper precaution is not taken. If the motor has a space heater, be sure to turn the heater on. When turning on the space heater source, check to see that the heater surroundings are free from foreign objects and be sure that the voltage is normal. Check for abnormal temperature rises during the first several hours after the power is turned on. When the space heater is not attached, prevent a dewing by heating the inside of a motor by means of an electric light etc.

Antifriction bearings are filled with grease; however, since lubricant is not filled in sleeve bearings at transportation, the lubricant indicated in the outline drawing or the name plate shall be filled and the rotor shall be turned periodically to protect the journal from rust.

Machined metal surfaces have been protected with rust inhibitive paint, rust inhibitive oil or grease in our factory. If damage on these surfaces is found, then repaint rust inhibitive agent for protection after removing rust and moisture thoroughly.

In order to prevent damage of bearing, be careful of a motor to receive neither a vibration nor a shock from a floor.

The cable penetrations in the terminal box should be covered with a cap or gummed tape.

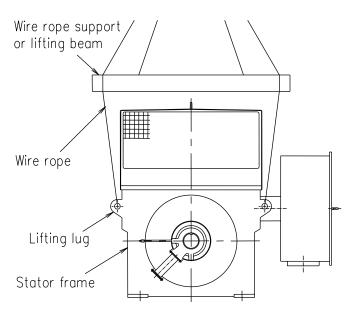
#### (2) Long term storage

The following explains what to do if the motor is to be stored or left unused for more than six months. In this case, the countermeasures shown in Table 3-1 should be provided in addition to the ones specified for the temporary storage above.

The countermeasures for long term storage vary depending on the type of construction or installed conditions, etc. Please be sure to consult our company for further information if you have questions.

Final inspection, treatment and adjustments before operation require expert knowledge and skill. Our supervisors are available if needed.

| for motor assembly |         |                     |                                                     |                 |                   |         |
|--------------------|---------|---------------------|-----------------------------------------------------|-----------------|-------------------|---------|
| Item               | Place   | Style of            | Measure for quality pre                             | Inspection      | Inspection        |         |
|                    | of      | storage             | storage Protection from rust and deformation        |                 | method            | cycle   |
| Parts              | storage | moisture and damage |                                                     |                 | ,                 |         |
|                    |         | 1) Wrap with        | 1) Pretreat and apply an                            | 1) Put a        | 1) Unpack and     |         |
|                    |         | a poly-             | air-dry type coil varnish on                        | canvas sheet    | check the         |         |
|                    |         | ethylene            | the base mounting                                   | over for        | appearance        |         |
|                    |         | sheet, and          | surface.                                            | protection      | for damage.       |         |
|                    |         | put on              | 2) Pretreat and apply an                            | 0               | 2) Measure the    |         |
|                    |         | sleepers            | air-dry type coil varnish on                        | and rain and    | insulation        |         |
|                    |         | 2) Pack by          | the exposed parts of                                | air borne       | resistance of     |         |
| <b>a</b> ( )       |         | sealing a           | machined surfaces.                                  | contaminants    | windings.         |         |
| Stator             |         | desiccant           | 3) Attach a space heater                            |                 | 3) Every six      |         |
|                    |         | in the poly-        | inside the motor, and keep                          |                 | months,           |         |
|                    |         | ethylene            | it energized at all times.                          | components      | remove the        |         |
|                    |         | sheet.              | When it cannot be used,                             | and parts on    | rust inhibitor    |         |
|                    |         | (silica-gel:        | 0.3kg/m <sup>3</sup> of desiccants                  | top of each     | from the shaft    |         |
|                    |         | 300  to  500        | (silica gel) are enclosed                           | other.          | end and           |         |
|                    |         | g/m³)               | inside the motor.                                   | 3) Protect any  | coupling, and     |         |
|                    |         |                     |                                                     | instruments     | check visually    | Every 6 |
|                    |         |                     | 1) Pretreat the shaft journal                       | with plywood    | for rust.         | months  |
| Rotor              |         |                     | and oil slingers, and apply                         | boards.         | 4) Inspect the    |         |
|                    |         |                     | rust inhibitive oil.                                |                 | shaft journals    |         |
|                    |         |                     | 1) For sleeve bearings:                             |                 | every six         |         |
|                    | Indoor  |                     | Pretreat the spherical                              |                 | months.<br>5) For |         |
|                    |         |                     | surface and babbitt metal                           |                 | antifriction      |         |
|                    |         |                     | with rust preventive oil, or                        |                 | bearings, turn    |         |
|                    |         |                     | fill a volatile corrosion                           |                 | the rotor         |         |
|                    |         |                     | inhibitor (Ferro-Guard                              |                 | every six         |         |
| Bearing            |         |                     | 1009 or equivalent) into                            |                 | months, and       |         |
|                    |         |                     | the bearing housing at                              |                 | supply grease     |         |
|                    |         |                     | approximately 1% of the                             |                 | or replace        |         |
|                    |         |                     | specified oil amount.                               |                 | grease            |         |
|                    |         |                     | 2) For antifriction bearings:                       |                 | completely.       |         |
|                    |         |                     | Supply grease.                                      |                 | 1 5               |         |
|                    |         |                     | Completely drain water                              | Protect the     | Perform a         |         |
|                    |         |                     | accumulated in the cooler                           | cooling fins to | visual            |         |
|                    |         |                     | by air blow, wrap                                   | prevent         | inspection of     |         |
|                    |         |                     | approximately 50 g (400 g/m3 for cooler capacity of | damage.         | the exterior.     |         |
| Heat               |         |                     | 0.125 m3 or more) of                                |                 |                   | Every 6 |
| exchanger          |         |                     | vaporizable rust inhibitor                          |                 |                   | months  |
|                    |         |                     | (Copper-gard) in gauze or                           |                 |                   |         |
|                    |         |                     | the like inside the cooler,                         |                 |                   |         |
|                    |         |                     | and seal and store each                             |                 |                   |         |
|                    |         |                     | flange section.                                     |                 |                   |         |


 Table 3-1
 Styles of long-term storage and methods of quality preservation for motor assembly

\* Before operation after a long term storage, take out all desiccants from the inside of a motor and drain a volatile corrosion inhibitor from a drain plug in order to return to the regular condition before a storage.

## 4. Installation

## 4.1 Attention at motor transportation

|            | WARNING                                                                                                                                                                                                                                                                 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc$ | <ul> <li>Never enter the area directly beneath the motor while it is being hoisted.</li> <li>You may be seriously injured if the motor should fall.</li> </ul>                                                                                                          |
| $\bigcirc$ | <ul> <li>Do not hoist the motor using the auxiliary lifting lugs, e.g. on terminal box, top-mounted heat exchangers etc., which are not designed for carrying the machine weight.</li> <li>This may result in injury by falling or overturning of the motor.</li> </ul> |
| $\bigcirc$ | <ul> <li>Hoist the motor alone.</li> <li>You may be seriously injured if the motor should fall.</li> </ul>                                                                                                                                                              |
| 0          | ■Do not attach wire ropes for hoisting to the locations other than the lifting lugs on the sides of the stator frame, and do not attempt to hoist more than one motor at a time.                                                                                        |
|            | <ul> <li>Put wood or thick cloth between the housing or covers and the ropes to protect the housing of the motor and wire ropes.</li> <li>Failure to this may damage the motor or the wire ropes.</li> </ul>                                                            |
|            | <ul> <li>Do not use materials handling equipment that is not suited to the weight (*).</li> <li>* Noted in specifications (outline drawing) or on nameplates attached to the motor itself.</li> <li>This may cause the motor to fall, resulting in injury.</li> </ul>   |
| 0          | Make sure the load is applied vertically to wire ropes and that it is balanced<br>during hoisting.                                                                                                                                                                      |



Example of motor lifting

## 4.1 Attention at motor transportation (Continuation)

| WARNING |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | <ul> <li>Be sure to remove the transport protective device(s) before trial run. As there is case that the protective devices are not only attached on the drive end side bearing but also on the non-drive end side bearing, confirm certainly that the protective devices on the both bearings are removed before trial run.</li> <li>Failure to do this may result in breakage or overheating and subsequent burnout and injury.</li> </ul> |  |  |  |
|         | Attach the protective device(s) in case of re-transport.                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|         | <ul> <li>When working at elevations of more than 1.5 meters, be sure to wear a safety belt.</li> <li>If you fail to do this, you may fall and be injured.</li> </ul>                                                                                                                                                                                                                                                                          |  |  |  |
| 0       | <ul> <li>Rope off the work area to prevent people other than work personnel from entering.</li> <li>Failure to do this may result in people suffering electric shock or becoming caught in the machinery.</li> </ul>                                                                                                                                                                                                                          |  |  |  |



Example of transportation cautions nameplate

## 4.2 Attention of installation place





■Install the motor in a proper location that matches the operating conditions (\*) noted in specifications.

\* Refer to the specifications in detail.

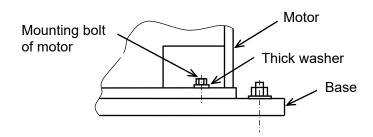
- Failure to do this may result in fire or electric shock.

| $\bigcirc$ | <ul> <li>Do not place flammable materials near the motor.</li> <li>They may ignite and burnout.</li> </ul>                                                                                                                                                                      |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | <ul> <li>Rope off the work area to prevent people other than work personnel from entering.</li> <li>Failure to do this may result in people suffering electric shock or becoming caught in the machinery.</li> </ul>                                                            |
| 0          | <ul> <li>When working at elevations of more than 1.5 meters, be sure to wear a safety belt.</li> <li>If you fail to do this, you may fall and be injured.</li> </ul>                                                                                                            |
| 8          | ■Do not touch the key groove of the motor shaft end by bare-handed This may result in injury.                                                                                                                                                                                   |
| 0          | <ul> <li>Prevent vibration more than specified condition generated by other machines from being transmitted to the motor through the foundation and floor.</li> <li>Failure to do this may result in injury because of damage and loosening of parts etc.</li> </ul>            |
|            | Install the protection cover so as not to touch the rotation parts Failure to do this may result in injury.                                                                                                                                                                     |
|            | <ul> <li>Make sure the direction of motor rotation matches that shown in outline drawing and nameplates.</li> <li>Improper motor connecting may cause it to suffer overheating and damage.</li> </ul>                                                                           |
| $\bigcirc$ | <ul> <li>Do not put the obstacle that disturbs ventilation of the motor.</li> <li>This may result in the explosion, a fire or the burn because of an abnormal overheating.</li> </ul>                                                                                           |
|            | <ul> <li>In the case of the motor with a fan cover, set distance from a fan cover to a wall to 200mm or more and don't bar an exhaust air.</li> <li>If there is no enough space, cooling will become insufficient, and the motor could overheat and lead to burning.</li> </ul> |

## 4.2 Attention of installation place (Continuation)

| Notice                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Dry place</li> <li>The place without the leakage of water from piping etc.</li> <li>The place without falling of the condensed water from the roof which is made of the kind of glass or a metal</li> <li>In case of installation on a floor, make a motor somewhat higher than a base plane to improve drainage.</li> </ul>                                                               | <ul> <li>Place with few dusts</li> <li>Dusts may cause an insulation resistance depression of coils.</li> <li>Dusts may cause of bearing accidents, such as deterioration of lube, wear of bearing metal, etc.</li> </ul>                                                                                                                                  |  |  |
| <ul> <li>Well-ventilated cool place</li> <li>Maintain an ambient temperature within 40 deg. C or name plate written temperature.</li> <li>If an ambient or cooling medium temperature exceeds a specification value, the motor cannot be applied with the rated power</li> <li>The place without a toxic gas</li> </ul>                                                                             | <ul> <li>Easy place of a maintenance and inspection</li> <li>The place which is easy to pull out a motor in consideration of disassembly and inspection of the future</li> <li>The place where external vibration is</li> </ul>                                                                                                                            |  |  |
| <ul> <li>The place with few corrosive gases and toxic gases</li> <li>Avoid near the storage area of explosive gas and liquid.</li> </ul>                                                                                                                                                                                                                                                            | <ul> <li>not transmitted</li> <li>Vibration of other machines should not be transmitted from a base, floor, etc.</li> </ul>                                                                                                                                                                                                                                |  |  |
| <ul> <li>The place with few voltage variations of<br/>a power source</li> <li>The place where the voltage variation at<br/>operation and the voltage drop at starting is<br/>within the values which are determined in the<br/>specifications or the standard</li> <li>Attach surge suppressors against an external<br/>surge by thunder and a switching surge by<br/>breaker operation.</li> </ul> | <ul> <li>The protective devices at a motor installation</li> <li>When there is no requirement, the protective devices are not installed.</li> <li>Depending upon the machine, it is recommended to install thermo sensors, such as thermistors and RTDs.</li> <li>When protective devices need to be attached, please contact with our company.</li> </ul> |  |  |

## 4.3 Design and construction of foundation


For the design and construction of the foundation, the following points should be considered.

- (1) The foundation should not only have enough strength to support static and dynamic loads of the motor itself which are indicated in the submission document, but also it must endure the mechanical vibrations. Moreover, the natural frequency of the foundation should avoid resonance frequencies with the machine, such as the rotational speed frequency and electromagnetic frequency.
- (2) The load supporting areas, shape and weight of the foundation should be determined so as not to develop ground subsidence, sliding, floatation and wandering. If the subsoil conditions are poor, the usual practice is to drive in piles and it should be considered that all loads are borne only by the piles. In this case, the supporting capacity of the soil is usually neglected.
- (3) When a ventilation duct is to be set in the foundation, care should be taken not to allow ground water into the duct. If water seeps into the duct, the coil insulation will deteriorate due to moisture.
- (4) During the first four weeks after concrete is poured, and particularly in the first one to two weeks, the concrete will increase its strength sharply. Thus, the concrete surfaces and boards should be covered with mats, cloths or sand and sprayed with water. They should be kept wet for at least one week in summer and at least two weeks in winter in order to ensure thorough curing.
- (5) Be sure to cover the anchor bolt holes to prevent foreign objects entering.
- (6) The upper surface of the foundation should be finished as flat as possible in order to facilitate the motor installation.
- (7) Chip the concrete foundation surface to a depth of about 50mm and roughen in enough to allow easy centering or increase adhesion between mortar and foundation.

### 4.4 Installation of motor

The motor base is a sole plate type or a common base type with a machine side. For the motor with sole plates, the motor should be temporarily installed on packers with sole plates. For the motor with a common base, the coupling is disconnected, and the base is installed. After a grouting is constructed, the motor should be set on the base with the machine, and centering is carried out.

At installing the motor to the base, tighten the bolts with thick washers.



#### (1) Temporary centering

Put the motor with sole plates on packers temporarily and carry out temporary centering based on the machine side

In this stage, the tolerance of the cylindrical surface shall be set up in approximately 0.05 mm and the tolerance of the length between each shaft end against normal dimension shall be in approximately  $\pm 0.5$ mm. In this case, adjust the liners on the packers.

When installing a vertical motor on a machine stand or base, remove a rust preventive agent of a lower bracket flange face and check that there are not rust and burr, and temporarily set the motor on the stand or base.

(2) Match of position

Confirm the match of position of piping and wiring.

## 4.5 Grouting

After the temporary centering, fill mortar into the lower part of the base, internal foundation bolt holes, etc., where total weight is applied to the base. The following things should be done at that time.

- (1) Roughen the foundation surface in order to ensure adhesion of mortar after clearing thoroughly.
- (2) Spud the mortar to drive out cavities.
- (3) During mortar grouting work, take care not to move the packers and subpackers by mistake.
- (4) After the mortar has been grouted, thoroughly cure it by the same way as the foundation concrete work. The curing period should be at least one week in summer and at least two weeks in winter. After the concrete has cured enough, tighten up the anchor bolts, and check the record of the alignment workmanship. If there is nothing wrong with the installation, assemble the floor deck plates, piping, etc.

## 4.6 Centering and alignment

After the foundation has been cured completely, the centering and alignment work which is the most important in the motor installation is performed. When the driven machine has already been installed on the common base etc., the installation of the motor should be carried out with the coupling of the driven machine as a reference.

When rotating a rotor of a motor with sleeve bearings, be sure to supply oil to journals to prevent damage of bearings.

Since the required shim length of each leg of a motor is indicated in the outline drawing, prepare the shims according to this. It may cause vibration if the shims are short.

(1) While checking the magnetic center gauge at the bearing end, adjust the rotor end play to the value specified in the drawing. The end play means the maximum axial play of the rotor. Standard end-play tolerances are as shown in Table 4-1, except when equipped with special thrust bearings or when requested from directly-coupled machines. Adjust the axial center of the stator by measuring the relative positions of the stator and rotor cores.

| ······································ |                 |  |
|----------------------------------------|-----------------|--|
| End play (mm)                          | Tolerances (mm) |  |
| 8                                      | +2.5            |  |
| (End float=16) (*)                     | -2.5            |  |

 Table 4-1
 End play tolerance of standard bearings

\* End float is the summation of the end play of both sides

(2) As shown in Fig. 4-1, install the dial indicator onto the coupling of the motor side, measure the parallelism and the degree of eccentricity while quietly turning the rotor of the motor by using the coupling section, and adjust the shaft center. However, since this may vary depending on the type of the machine, also contact the machine manufacturer for further details.

For vertical motor, a steady rest device is attached so that the shafts of a motor and machine may not swing within bearing, and parallelism and eccentricity are measured.

Generally, for measurement of the parallelism, the thickness gage or taper gage is used, whereas, for measurement of the eccentricity, a dial gage is attached on the coupling of one side and the shaft is turned by 0 degree, 90 degrees, 180 degrees and 270 degrees to read the values of the four locations. (see Figures 4-2 and 4-3)

| Speed    | of rotation                  | Over<br>1500 min <sup>-1</sup> | Over 1000<br>up to<br>1500 min <sup>-1</sup> | Up to<br>1000 min <sup>-1</sup> |
|----------|------------------------------|--------------------------------|----------------------------------------------|---------------------------------|
| Rigid    | Deviation of<br>eccentricity | 0.02                           | 0.03                                         | 0.04                            |
| coupling | Deviation of<br>parallelism  | 0.03                           | 0.04                                         | 0.05                            |
| Gear     | coupling                     | 0.06                           | 0.08                                         | Less than 0.1                   |

Table 4-2 Recommended Alignment Values (Unit: mm)

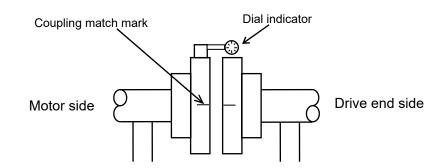
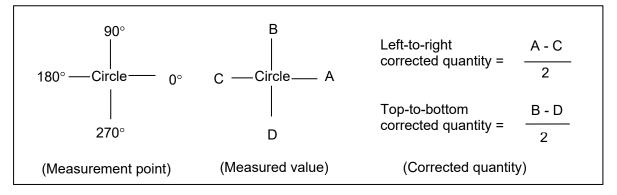




Fig. 4-1 Centering and alignment method with the coupling as a reference

#### **Measurement of eccentricity**

Measure and record the values of the four locations with the dial gage by turning both shafts. Determine the corrected quantities as shown below.



Note: The difference of the measured values of the sum of the right and left points (A+C) and the sum of the top and bottom points (B+D) in Fig. 4-2 must be less than 0.03mm. Most of the factors to which this difference becomes large are caused by the fixing failure of a dial gauge or the deflection of an attachment arm. Therefore, make correction of proper alignment.

#### Measurement of parallelism

Measure and record the values of the four locations, E1, F1, G1, and H1, with a thickness gauge at the combination position of both shafts for the measurement of parallelism. Next, rotate the both shafts by 180 degrees, and then measure and record the values of the other locations, E2, F2, G2, and H2. Determine the corrected quantities as shown below.



Fig. 4-3 Measurement of parallelism

#### Adjustment of alignment

The motor position is to be adjusted after the corrected values have been obtained from the measurement of the eccentricity and parallesm.

It is recommended that hot state alignment is carried out in consideration of the location of the shaft center when there is a temperature difference between the motor and directly coupled machine at load condition, since alignment is generally performed in cold state.

Note: The measurement of the alignment and the determination of the corrected value should be made after the motor foot and the foundation bolts of the base have been fully tightened.

For larger or higher speed machine, high-level technique is necessary for adjustment of the levelness at journals, the center position of two shafts at the coupling, the clearance between the coupling planes, etc., because of the rotor deflection or the relation of the critical speed and running speed. Therefore, technical assistance by our engineer or machine vender's expert is recommended for each case.

#### 4.7 End play and burnout prevention of sleeve bearings

When a sleeve bearing motor is run independently, the rotor turns at the magnetic center. If the rotor was shifted in the axial direction for some reason, a return force acts. Since this force is very small, the rotor can't return easily to the magnetic center if the rotor is held by an external force.

When a flexible coupling is used on a high-speed machine, it becomes more difficult for the flexible coupling to slip in proportion to the increase in contact pressure to transmit the torque.

The flexible coupling has a movable distance in the axial direction, and should be less than the end play of the motor to prevent the following phenomena;

- (1) There are cases that the motor end play becomes zero, because the coupling can move freely due to the absence of torque to transmit when the motor stops. If the motor is restarted at this time, the bearing side surface of the motor will be in a state of metallic contact, and the bearing may result in burnout.
- (2) If the motor shaft receives an axial thrust during rotation, the result will be the same as above.

In general, the end-play of the bearing of motor should have a greater value than that of flexible coupling or gear coupling, in order to prevent the burning of the bearing. When installing the motor, check the dimensions in Fig. 4-4.

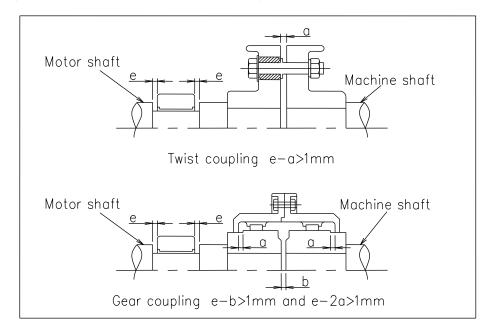



Fig. 4-4 Relation between the end-play of the bearing and the flexible coupling

The space of 1mm or more is necessary.

When assembling the two flanges, align the magnetic center gauge with the red datum-line of the shaft, in order to decide the position of the motor.

Note: Examine the connecting surface of the coupling or the spigot part whether there are scars on it. If any, polish the surface gently with an abrasive stone.

## 4.8 Insulation for prevention of shaft current

Shaft insulation is applied to the motor for prevention of harmful shaft currents. Usually, the shaft is insulated on the non-drive end bearing as shown in Fig. 4-5. Thus, when selecting a double shaft-end motor, the non-drive end coupling should be insulated.

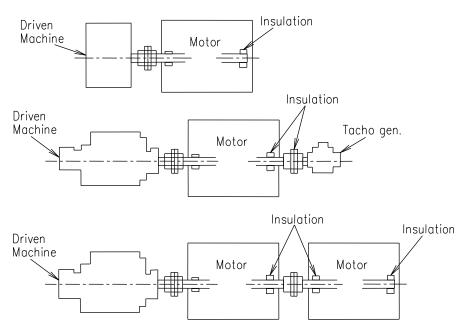
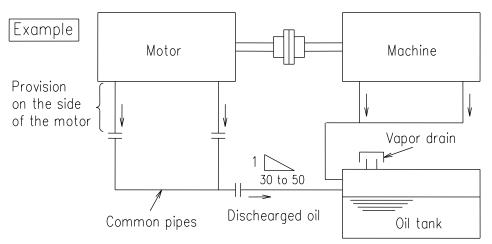




Fig. 4-5 Shaft insulation arrangement

## 4.9 Piping

When constructing piping from a motor to an oil tank, pay attention to the following points.

- (1) Prepare the oil discharge system of the motor as described below, in order that the vapor in the bearing on the machine side and the oil tank may not cause the counterflow into the bearing of the motor.
  - a) Separate the oil discharge pipes of the motor from those of the machine. Do not connect them in the middle.
  - b) Establish the oil tank with a vapor drain, which is big enough to have either ① or ②, in order to decrease the inside pressure of the oil tank and of the pipes to a natural atmospheric pressure.
    - 1 a discharge drain without a fan
    - ② a drain with an exhaust fan
  - c) As for the oil draining pipes from the common pipes to the oil tank, the gradient must be between 1/30 and 1/50. If the gradient of the oil draining pipes is not sufficient, and/or its cross section is too small, then, the oil won't flow smoothly, and it may overflow or cause a leak.
  - d) The pipe diameter must be large enough.



- (2) Be sure to attach a pressure gauge and a flow meter to the oil inlet line and the water supply line. Also provide an oil sight for the oil outlet line and a water sight for the water drain line to facilitate inspection of the pressure and flow of the fluids.
- (3) Install the piping along the machine body, and saddle them with proper fittings to prevent them from shaking.
- (4) Be sure to attach the orifice plate or flange type adjusting valve to the oil inlet. Since the size of the orifice plate or the valve opening has been adjusted in our factory, it should not be tampered with.
- (5) The oil piping should be designed and adjusted with account taken of the oil pump, pressure regulator and other pipes so that the pressure and flow rate specified in the outline drawing can be attained at the motor bearing inlets.
- (6) Make sure that there are no foreign objects like rags left inside the pipes. Then, clean them thoroughly and connect them. The cleaning before the pipe connection is accomplished in one of the following two methods;

One method is to blow in steam at a pressure of 200 to 300 kPa.

The other is to pickle with 10% aqueous solution of sulfuric acid or hydrochloric acid, neutralize immediately with a 20% aqueous solution of caustic soda, and then rinse with water.

Either method should be followed by lubrication with turbine oil for preventing rust.

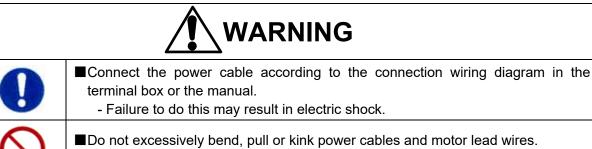
(7) After the piping has been completed, it should be flushed thoroughly before being fitted to the motor bearings. The flushing can be carried out by using the oil feed pump furnished together with the motor or a separate oil pump which doubles as a filter.

When the flushing has been carried out by using the oil feed pump, be sure to clean the oil tank thoroughly before a trial run. Since flushing oil circulating in the piping system is including foreign matter, it should not be run into the bearing metals. Specifically, the piping should be modified to bypass the bearing metals and to connect the inlet and outlet lines at the outside of the bearing housing.

The flushing oil returning to the oil tank should be passed through an 80-to 100-mesh wire filter. The flushing will be complete when foreign matter is no longer trapped by the filter. The filter should be replaced at an interval of several hours.

The flushing will take 24 to 48 hours, or as long as a week if the piping is long. For the purpose of flushing, prepare reclaimed oil as well as fresh oil. The flushing oil is used by heated to  $70^{\circ}$ C to  $80^{\circ}$ C. During flushing operations, hammer the pipes to dislodge incrustations from the pipe inner walls and scour them away with the running oil. Clean the bearing housings, bearings, oil tank and oil cooler thoroughly, and make sure that there is no foreign matter left in the piping system.

After the flushing has been completed, set up the original piping, charge fresh oil, and check for oil leaks and adjust the oil quantity to prepare for the trial run.


Record the installation results on the check sheet shown as Appendix 2.

## 5. Wiring

## 5.1 Attention at wiring

| 0 | ■Use cables of the proper size Failure to do this may result in overheating and fire.                                                                                                                                                                                                       |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0 | <ul> <li>Wire according to the specification, standards and regulations.</li> <li>Failure to do this may result in burnout or fire.</li> </ul>                                                                                                                                              |  |
| 0 | <ul> <li>Attach a ground relay or other suitable protective relay to the power source side<br/>and be sure to attach a ground line to the earthing terminal on the motor.</li> <li>Failure to ground the motor may result in electric shock in the event of current<br/>leakage.</li> </ul> |  |

|  | ■Connect the earthing conductor to the earthing terminal of the motor Without grounding may result in electric shock.                                                                                                                                       |  |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  | <ul> <li>Use the tightening torque (*) specified when tightening bolts.</li> <li>If bolts are not tightened to the proper torque, they may break or may result in overheat and fire.</li> <li>* Please refer to Table 6-6 (page 39) for details.</li> </ul> |  |



- This may result in electric shock.

## 5.2 Procedure of wiring

Always use proper wiring equipment. Follow the Electric Facility Technology Standards and any other applicable standard. If the wiring distance is long, the voltage drop could increase and cause problems when starting the motor. Therefore keep the wire length as short as possible or adjust the applied voltage for the voltage drop.

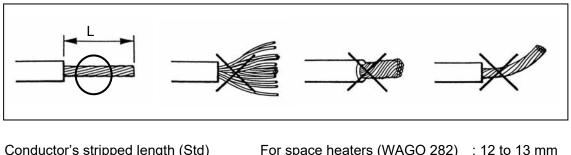
The motor insulation type is shown on the nameplate. Since the temperature around the terminal box will be relatively high on motors that use a high-temperature insulation (insulation class "F"), use high heat-resistance wiring cables and insulation tape around the terminal box.

## 5.3 Connection

Usually, a motor has three or six terminals and their leads are marked with L, V, W, etc. in the terminal box. When connecting the leads to the power cables (R, S, T, etc.) respectively, the motor rotates in the direction of the arrow mark shown on the motor frame.

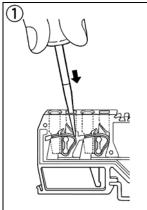
If the connection name plate is attached, make a connection according to this.

## 5.4 Grounding (Earth)

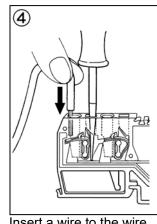

The motor insulation acts both as an insulator as well as an inductor. Therefore a capacitance is formed between the insulation and the ground. If the motor is not ground, an induced voltage approximately 50% to 60% of the power voltage could occur between the frame and ground. To prevent electrical shock, always ground the motor and follow the Electric Facility Technology Standards. Grounding bolts or terminals are provided on the motor's frame. When using the grounding terminal of a terminal box, connect a terminal box with a frame with an earth wire.

|   | Class                | Grounding wire (mm <sup>2</sup> ) |
|---|----------------------|-----------------------------------|
| 1 | 1000kW or more~      | 100                               |
| 2 | 750kW or more~1000kW | 80                                |
| 3 | 300kW or more~750kW  | 60                                |
| 4 | 37kW or more~300kW   | 38                                |

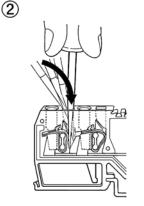
## 5.5 Terminal connection in auxiliary terminal boxes


If not specified, terminal blocks for wiring of protective devices may be WAGO type without screws. When connecting terminals, please see outline drawing of terminal box or instructions of next page, and connect terminals properly. In addition, use a driver that is smoothly inserted in the operating slot and of which a spring can be opened. (A terminal block may be damaged when a driver bigger than the operating slot is used by force. Be careful that the spring cannot be opened and a rated wire may not be inserted In case of too small driver.)

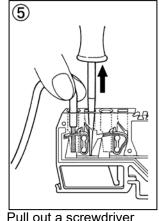
■ Stripping of Wire ○ Strip a conductor's stripped length related as drawings.



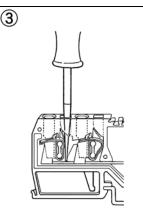

| tor's stripped length (Std) | For space heaters | s (WAGO 282) | : 12 to 13 mm |
|-----------------------------|-------------------|--------------|---------------|
|                             |                   | (WAGO 2004)  | : 11 to 13 mm |
|                             | For RTD's etc.    | (WAGO 870)   | : 6 to 7 mm   |
|                             |                   | (WAGO 2001)  | : 11 to 13 mm |
|                             |                   |              |               |


• Connecting • Follow the instructions below.

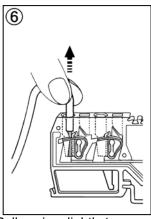



 Insert a screwdriver to the operating slot (square hole) obliquely




(4) Insert a wire to the wire hole (round hole).




② Insert a screwdriver to the inside of the terminal block.



Pull out a screwdriver from the operating slot with holding a wire.



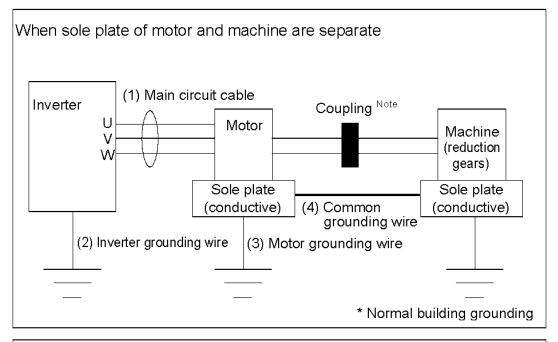
③ The screwdriver will be fixed when operated correctly.



- Pull a wire slightly to check if connecting has been done completely. (Do not pull strongly.)

(5)

## 5.6 Precaution at inverter drive


If the common mode voltage of an inverter that carries out high-speed switching is applied to the induced voltage of a motor or the driven machine (including reduction gears), the bearings can be electrically corroded. Observe the following to prevent electric corrosion.

- (1) Wire the main circuit cable between the inverter and motor with the shortest possible wire to reduce the inductance. Use a shield cable (The both ends of a shield cable are connected with a motor at an inverter) when possible to reduce the induced voltage.
- (2) Wire the grounding wire of the inverter with the shortest possible wire to reduce the inductance.
- (3) Wire the grounding wire of the motor with the shortest possible exclusive wire to reduce the inductance.

Connect the wire to a grounding pole that has low impedance\*.

\* The impedance of the motor is less than or equal to the machine side impedance.

- (4) If the motor and driven machine (including reduction gears) are installed on separate base plates, connect the base plates of the motor and driven machine to earth (ground). Also connect both bases together.
  - \* When adding earth (grounding) wires:
  - $\boldsymbol{\cdot}$  Use a flat mesh wire with high harmonic properties.
  - Use a wire that is equivalent to or thicker than the motor's grounding wire.
  - Use the shortest wire possible that uses two or more bars. (Three bars when 1000kW is exceeded.)



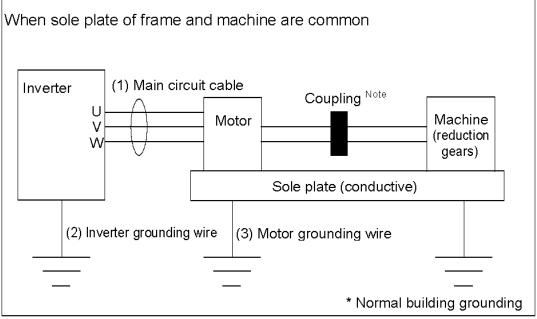



Fig. 5-1 Grounding wire connection

Note: Use of <u>an</u> "insulated coupling" between the motor and driven machine (including reduction gears) is also effective. This may not be possible on large capacity machines due to strength problems.

- (5) Earth Brush
  - a) Function

When driving a motor by an inverter, shaft voltage occurs between the shaft and earth (ground) due to electrostatic induction. This voltage is depending upon the motor and inverter capacitance. When this voltage is large, bearing failure may occur due to the shaft current passing through the bearing. To prevent the shaft current, an earth brush (grounding brush) is installed for an inverter-driven motor, and the shaft current will not pass through the brush to the bearing bracket (ground). Pay attention because the brush is subject to spark.

b) Attachment procedure

The brush is commonly attached on the drive end bearing bracket. Replace the brush after the power supply has been turned off, under the motor stop.

c) Maintenance procedure

Since the brush wear varies due to a running period and environmental conditions, check the brush once every 1-2 month. Replace the brush according to the earth brush maintenance nameplate attached to the motor frame.

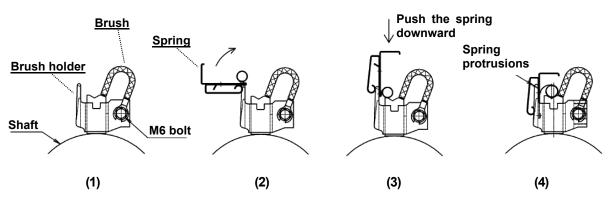
The following is an example of installation construction of an earth brush.

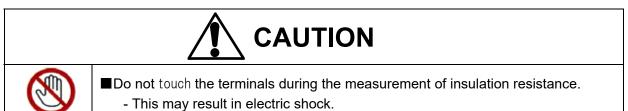
[Installation Instructions]

This structure is an example of a constant-pressure loading spring type. Assemble in the order shown in Figure 5-2 (1) to (4).

- (1)Set the brush in the brush holder and attach the lead wire to the screw of the brush holder.
- (2)Spread the tip of the spring slightly and attach it to the brush holder while hooking it to the brush holder.
- (3) Push the spring downward.
- (4)Attach the spring by hooking the protruding part of the spring into the hole of the brush holder.

After removing a brush at motor stop, check the brush abrasion loss and clean up.





Fig. 5-2 Earth Brush Installation Instructions

## 6. Preparations and inspections before trial run

The motor has passed strict factory tests, but it is considered that there is influence by accidents during transportation or at the time of long-term storage. Thus, recheck the following items.

Use the check sheet shown in Appendix 3 for preparations and inspections before the trial run

## 6.1 Measurement of insulation resistance



If the rated voltage is less than 600V, use a 500V megger. If it is 600V or more, use a 1000V megger.

For insulation resistances, refer to the section 14.3 "Insulation resistance" in Page 83.

CAUTION

## 6.2 Inspection of wiring



Do not operate the motor without being short-circuited of the current transformer's secondary terminals.
 This may arise a high voltage between the terminals and damage the CT.

Check the wiring for power supply circuits and protective devices based on the wiring diagram. Also inspect tightening condition in each connection, insulation, and clearance where no electrical contact is allowed. Especially when a current transformer (CT) is installed, confirm that its secondary terminals are connected to a measuring instrument or are short-circuited.

## 6.3 Inspection of grounding wires

Grounding terminals are provides on the stator frame and terminal box. Check them with the outline drawing and make sure that the grounding wires are connected properly.

### 6.4 Bearings

For the inspection of the bearings, refer to the bearing cooling system described in the motor specifications and outline drawing. If the bearing cooling system is not stated, the bearings are the natural cooling type; the antifriction bearings are lubricated by grease or oil, and the sleeve bearings are lubricated by oil rings. When the rust preventive agent is enclosed in the bearing housings of oil-lubricated motor, lube oil is poured in after discharging it from the drain plug. Use the grease or oil specified in the nameplate or outline drawing. Refer to our recommended lubricants shown in section 6.5.

- (1) Natural cooling type (antifriction bearings)Grease has been filled in the bearings at the factory.Confirm whether there is grease leakage on the shaft, oil slinger, or bearing housing, etc.
- (2) Natural cooling type (sleeve bearings and antifriction bearing of vertical motor)
   Fill lubricant up to the level marked on the oil gauge.
   Oil supply over the oil gauge level may result in oil leakage, and oil shortage may lead to excessive temperature rise.
- (3) Forced feed lubrication type

Confirm that the orifice plate of bearing or flange type adjusting valve is fitted. After checking the lubricating system according to the piping diagram, circulate the specified lubricant. During check the oil flow, oil pressure and oil circulation through the oil site make sure that the piping has no trace of oil leakage.

(4) Water cooled type (antifriction bearing of vertical motor)

When thrust is large for a vertical motor, an oil cooler is installed into an oil reservoir to cool the lube by water.

Fill the lube in the oil reservoir up to the level specified with the oil gauge. Excess of lube supply will cause an oil leakage, and shortage of lube will cause the increase of temperature rise.

## 6.5 Lubricant

(1) Lubrication oil (turbine oil)

Use inhibited turbine oil as lubricant for sleeve bearings or a part of antifriction bearing of a vertical motor. Make sure that the lubricant of the type specified in name plate and outline drawing is used.

|            |          | 7 |
|------------|----------|---|
| Grade2 oil | ISO VG32 |   |
| Grade2 oil | ISO VG46 |   |
| Grade2 oil | ISO VG68 | J |

Table 6-1 shows oil characteristics at 40°C, our recommend oil is listed as table 6-2. Basically we will recommend "Mobil SHC600 series" made in Exxon Mobil.

Table 6-1 Oil characteristics

|                           | ISO VG32  | ISO VG46  | ISO VG68  |
|---------------------------|-----------|-----------|-----------|
| Kinematic viscosity [cSt] | 28.8~35.2 | 41.4~50.6 | 61.2~74.8 |

|              |                           | Brand name                |                        |
|--------------|---------------------------|---------------------------|------------------------|
|              |                           |                           |                        |
| Manufacturer | GAS Turbine Oil           | GAS Turbine Oil           | GAS Turbine Oil        |
| Manalacturer | ISO VG32                  | ISO VG46                  | ISO VG68               |
| Mobil        | Mobil SHC 624, 824        | Mobil SHC 625, 825        | Mobil SHC 626          |
| SHELL        | Turbo oil GT32            | Turbo oil GT46            |                        |
| ENEOS        | FBK Turbine Oil GT32      |                           |                        |
| COSMO        | Cosmo Turbine Super       |                           |                        |
| COSINO       | GT32                      |                           |                        |
| IDEMITSU     | Daphne Super Turbine Oil  | Daphne Super Turbine      | Daphne Super Turbine   |
| IDEIVIT SU   | MG, FX                    | Oil HT46                  | Oil HT68               |
| Manufacturer | Turbine Oil               | Turbine Oil               | Turbine Oil            |
| Manufacturer | ISO VG32                  | ISO VG46                  | ISO VG68               |
| Mobil        | Mobil DTE Light           | Mobil DTE Medium          | Mobil DTE Heavy Medium |
|              | Mobil DTE 732             | Mobil DTE 746             | Mobil DTE 768          |
| SHELL        | Turbo Oil T32             | Turbo Oil T46             | Turbo Oil T68          |
| ENEOS        | FBK Turbine 32            | FBK Turbine 46            | FBK Turbine 68         |
|              | RIX Turbine 32            | RIX Turbine 46            | RIX Turbine 68         |
| COSMO        | Cosmo Turbine Super<br>32 | Cosmo Turbine Super<br>46 | Cosmo Turbine Super 68 |
| IDEMITSU     | Daphne Turbine Oil 32     | Daphne Turbine Oil 46     | Daphne Turbine Oil 68  |

| Table 6-2 | Commercial | lubricants |
|-----------|------------|------------|
|-----------|------------|------------|

Note: Due to merging, etc. of oil companies, brand names may be integrated/rearranged or changed. Therefore, for more details, contact the relevant oil companies.

#### Notice

Avoid a mixture of different type of lube

- This may result in reduction of lube life remarkably.

When changed into different type of lube, filled it after washing out a former lube.

Recommended change interval of the lube for the self-cooling sleeve bearing is indicated on the tables 6-3 and 6-4 according to the brand name. Refer to the section 9.3 (5)-2 "yearly maintenance" for exchange of lube.

Since the change interval of the lube is ruled by the continuity of a surrounding environmental condition used, such as the ambient temperature, a cleanness degree, operation condition, the severity degrees, etc., manage with the following change intervals of the lube as a reference.

# Table 6-3Oil change interval of self-cooled type(Recommended lube for change interval of one year\*)

| Manufacture | Recommended brand                           |  |
|-------------|---------------------------------------------|--|
| Mobil       | Mobil DTE 732, 746, 768                     |  |
| INDUI       | Mobil SHC 624, 625, 626, 824, 825           |  |
| SHELL       | Shell Turbo oil GT                          |  |
| ENEOS       | FBK Turbine GT32                            |  |
| ENEUS       | RIX Turbine                                 |  |
| COSMO       | Cosmo Turbine Super GT32                    |  |
| IDEMITSU    | Daphne Super Turbine Oil FX, MG, HT46, HT68 |  |

Table 6-4Oil change interval of self-cooled type(Recommended lube for change interval of 1-2 years\*)

| Manufacture | Recommended brand                 |
|-------------|-----------------------------------|
| Mobil       | Mobil SHC 624, 625, 626, 824, 825 |
| ENEOS       | FBK turbine GT32                  |
| COSMO       | Cosmo turbine super GT32          |

\* Note) The oil brand name may change. So contact oil vendor for detail information.

#### (2) Grease

(2)-1 Selection of grease

a) Recommended grease

Use the grease that is indicated on the bearing nameplate, which is attached near the rating nameplate of the motor and includes the content of a bearing maintenance and the grease name. Our standard grease is as follows.

| Manufacture | Brand name     | Soap base |
|-------------|----------------|-----------|
| Kyodo Yushi | ·Raremax Super | Polyurea  |
| SKF         | ·LGHP 2        | Polyurea  |

The following types of grease can be recommended particularly for use in motors. Please contact us if you are considering the use of other types of grease.

| Manufacture | Prond name (Seen hase)                                                   |  |
|-------------|--------------------------------------------------------------------------|--|
|             | Brand name (Soap base)                                                   |  |
| SKF         | LGHP2 (Urea base)                                                        |  |
|             | BEACON325 (Lithium base for low temperature)                             |  |
| Mobil       | <ul> <li>Mobilith SHC100 (Lithium complex base)</li> </ul>               |  |
| MODI        | <ul> <li>Unirex N2 (Lithium complex base)</li> </ul>                     |  |
|             | Polyrex EM (Urea base)                                                   |  |
| Shall       | Shell Gadus S2 V100 2 (Lithium base)                                     |  |
| Shell       | <ul> <li>Shell Stamina Grease RL2 (Urea base)</li> </ul>                 |  |
|             | Multinoc SDX (Lithium base + special sodium)                             |  |
| ENEOS       | <ul> <li>Multinoc Deluxe No.1 (Lithium base + special sodium)</li> </ul> |  |
| ENEOS       | <ul> <li>Multinoc No.1, No.2 (Lithium base)</li> </ul>                   |  |
|             | <ul> <li>Multinoc Urea No.2 (Urea base)</li> </ul>                       |  |
| Cosmo       | <ul> <li>New Dynamax No.2 (Lithium base)</li> </ul>                      |  |
| Cosmo       | Cosmo Wide Grease WR (Lithium base + special sodium)                     |  |
|             | Multemp SRL, SRH (Lithium base)                                          |  |
| Kyodo Yushi | <ul> <li>Unilube No.2 (Lithium base)</li> </ul>                          |  |
|             | Raremax Super (Urea base)                                                |  |

| Table 6-5 | The marketed grease | list |
|-----------|---------------------|------|
|-----------|---------------------|------|

b) Selection criteria according to the purposes

- For use in a high speed bearing, use grease with high pressure resistance. Choose a high consistency type concerning noise, and a low consistency type in terms of stirring loss. Generally, No.1 or No.2 grease is used.
- For low speed and high load service, use grease with high pressure resistance and low consistency.
- For long-period oil less service, use grease containing antioxidant and that is high in restorability (the property to return to the previous state while the bearing is stopped).
- For a high temperature bearing in particular, grease with a nonmetallic soap base (nonsoap) may be used.
- For damp places, use a water resistant type.
- For the standard motor of this series, urea soap based grease is used.
   The grease must be selected basically according to the conditions mentioned above, but other grease may also be used. However, do not mix different greases.
   When changing the grease, completely wash away the old grease, and supply new grease. However, in the case of similar soap base (Li + Na) grease to Li soap base grease, a slightly larger volume may be required to force out the old grease.
- The following greases are used for heat resistant, water resistant, or cold resistant requirements.

| Heat resistant (up to 150°C)                                  | Heat resistant silicone grease (not suitable for high-speed rotating bearings) |
|---------------------------------------------------------------|--------------------------------------------------------------------------------|
| Water resistant, chemical resistant (other than caustic soda) | Silicone grease (not suitable for<br>high-speed rotating bearings)             |
| Cold resistant (up to -60°C)                                  | cold resistant silicone grease (not suitable for high-speed rotating bearings) |

## Notice

- ■During operation, the bearing temperature will generally be several degrees higher than the measured temperature of the bearing housing.
  - Be sure to select a grease with temperature specifications that enable it to handle this higher bearing temperature.
  - (2)-2 Grease up

Since the grease will deteriorate with use, and lose lubrication function, the bearings must be replenished with grease periodically, according to the bearing nameplate attached on the motor. The grease-up interval should be within 1 year or 3000 running hours.

## Notice

- (1) When starting to run the motor after purchasing, of after 2 months or longer stoppage, be sure to add grease immediately after starting.
- (2) After starting operation, add grease in the quantity and at the interval indicated on the bearing caution plate on the motor.
- (3) While injecting grease, keep the motor running or turn it by hand, with the grease drain port open.
- (4) "Initial quantity" is the quantity for filling the bearing after disassembly cleaning.
- (5) "Regrease quantity" is the quantity to be injected at each "refill interval".
- (6) Do not think of adding more quantity so as to extend refill interval.
- (7) On the basis of the refill interval indicated on the caution plate, calculate the equivalent interval days, assuming 24-hour daily operation, and inject grease accordingly. This will extend bearing life and keep the bearing running in good condition. When the motor is irregularly operated, e.g., running 12 hours a day, then, 8 hours or 3 hours a day, calculate the refill interval assuming daily 12-hour operation to maintain good lubrication conditions.
- (8) Since a 4-pole or a 6-pole motor tends to develop failures such as abnormal noise, abnormal wear and bearing burning at high probability, when the specified grease injection after the installation of the motor, after 2 months or longer stoppage, or at the specified period under operation is neglected, rigorous maintenance (greasing) is particularly important with these bearings.
- (9) Excess grease causes bearing overheating, prolonged high temperature, or grease leakage, and too little grease causes local lack of grease in the bearing and consequential burning. Therefore, be sure to keep the specified add quantity.

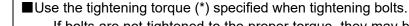
(2)-3 Grease discharge

When the outside oil shield is filled with grease, the stirring resistance creates heat to overheat the bearing or forces out grease. When adding grease, remove the grease drain cover and positively discharge grease and positively discharge grease.

## 6.6 Withstand voltage test

| 0 | Please check that the man approaches and is not in contact before a withstand voltage test and insulation resistance test. Provide an attention to nearby persons so that they don't approach and contact during the test Test voltage may result in electric shock. |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <ul> <li>During the withstand voltage test, ground all coils to which voltage is not applied.</li> <li>Failure to ground these coils may cause current leakage, resulting in electric shock.</li> </ul>                                                              |
|   | <ul> <li>Use a voltage changeable device for the withstand voltage test.</li> <li>Failure to do this may result in electric shock.</li> </ul>                                                                                                                        |
|   | <ul> <li>After a withstand voltage test, ground windings to discharge.</li> <li>Without discharging may result in electric shock.</li> </ul>                                                                                                                         |

If a withstand voltage test is carried out before a trial run, measure the insulation resistance, and make sure that it is higher than the specified limit.


Refer to IEC 60034-1 Chapter 9.2 and NEMA MG-1 Part-3 about the test voltage and the test procedure.

After the withstand voltage test has finished, be sure to discharge the tested winding. Never touch the windings until they have been discharged. To carry out the withstand voltage test, connect together those terminals which are rated at the same voltage, and impress a specified test voltage between this connection and the ground. All other windings except those to be impressed with the voltage must be grounded.

When a specific phase or a part of a specific winding is subjected to a withstand voltage test, disconnect the ends of that phase or that part completely and connect the ends together. Impress a test voltage between the ends and the ground. All other phases and windings should be grounded in advance.

## 6.7 Others

# 



- If bolts are not tightened to the proper torque, they may break or may result in overheat and fire.
- \* Please refer to Table 6-6 (page 39) for details.



The key which is temporary attached on a motor shaft should be removed before trial run.

- Failure to this may cause scattering of a key, resulting in injury.

CAUTION

Check for loosened bolts, nuts, dowel pins and connections. Unless otherwise designated, use the tightening torques listed in Table 6-6 when tightening bolts.

| Screw nominal | Reference value<br>[Nm] | Tolerable range<br>[Nm] |        | ange |
|---------------|-------------------------|-------------------------|--------|------|
| M5 × 0.8      | 3.24                    | 2.75                    | $\sim$ | 3.63 |
| M6            | 5.49                    | 4.71                    | $\sim$ | 6.37 |
| M8            | 13.2                    | 11.3                    | $\sim$ | 15.3 |
| M10           | 26.5                    | 22.6                    | $\sim$ | 30.4 |
| M12           | 46.1                    | 39.2                    | $\sim$ | 53.0 |
| M16           | 110                     | 93.2                    | $\sim$ | 127  |
| M20           | 216                     | 181                     | $\sim$ | 245  |
| (M22)         | 284                     | 245                     | $\sim$ | 333  |
| M24           | 363                     | 314                     | $\sim$ | 422  |
| M30           | 735                     | 628                     | $\sim$ | 843  |
| M36           | 1280                    | 1090                    | $\sim$ | 1470 |
| M42           | 2050                    | 1750                    | $\sim$ | 2350 |
| M48           | 3090                    | 2650                    | $\sim$ | 3520 |
| M56           | 4950                    | 4220                    | $\sim$ | 5680 |
| M64           | 7350                    | 6280                    | $\sim$ | 8420 |

 Table 6-6
 Specified torques for bolt tightening (in case of strength class 4.8)

# 7. Implementation of trial run

| 4          | <ul> <li>Do not operate with the cover of the terminal box detached.</li> <li>This may result in electric shock.</li> </ul>                                                                                          |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | <ul> <li>If a water cooler is used to cool the equipment, the cooling water shall be flow by specified temperature and flow rate.</li> <li>Failure to do this may result in overheating and lead to fire.</li> </ul> |  |  |  |
| 8          | <ul> <li>During operation, never touch or come near rotating parts.</li> <li>You may be caught in the mechanism and injured.</li> </ul>                                                                              |  |  |  |
| $\bigcirc$ | Do not place flammable materials near the motor during operation They may ignite and burnout.                                                                                                                        |  |  |  |

|            | WARNING                                                                                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc$ | <ul> <li>Do not operate after removing or disabling protective fixtures and safety equipment (including lids and covers)</li> <li>This may result in electric shock or injury.</li> </ul> |
| $\bigcirc$ | <ul> <li>Do not allow anyone other than those handling the equipment to go close to the motor during operating.</li> <li>This may result in electric shock or injury.</li> </ul>          |

| 0          | ■If in doubt, switch off the drive immediately Failure to do this may result in electric shock, injury, fire.                                                                                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <ul> <li>Do not touch neither a hand nor the body to the external surface of the motor directly because it becomes high temperature during operation.</li> <li>This may lead to the burn.</li> </ul>         |
| $\bigcirc$ | <ul> <li>Do not operate the motor without being short-circuited of the current transformer's secondary terminals.</li> <li>This may arise a high voltage between the terminals and damage the CT.</li> </ul> |

| 1 | Notice                                                                                          |
|---|-------------------------------------------------------------------------------------------------|
|   | ■Check that the magnetic center gauge matches to the reference line of the rotor at starting of |
|   | motor solo run.                                                                                 |
|   | - To overlook it may result in damage of the machine, such as a bearing burning.                |

At first, perform a motor solo run by disconnecting the intermediate shaft, etc. from the motor, and confirm that there is no problem. Then, connect the motor to its driven machines, and run together.

Whenever energizing the motor including a trial run, be sure to attach the cover to the terminal box. The following inspections and confirmations should be carried out before operation.

Use the check sheet shown in Appendix 4 to record at a trial run.

## 7.1 Solo run tests

- (1) Measure the supply voltage to check if the line voltages are balanced and are roughly in agreement with the rated motor voltages.
- (2) Check that the oil level of bearing is within the indicated position.
- (3) When starting a motor at first, cut off the power source immediately after starting, and perform the following inspection while it is rotating freely by inertia.
  - a) Confirm that the motor is running in the rotating direction specified in the outline drawing or in the rotational arrow plate.
  - b) Confirm that the bearing oil ring is turning normally.
  - c) Confirm that there are no abnormal noises or vibration, or there is no smell insulating materials burning.
- (4) If there is no abnormalities under the above inspection, restart the motor and inspect the bearing temperature, vibration, end play and oil ring rotation.
- (5) When performing a motor solo run again, check that the shaft is in a center gauge. If the shaft has shifted, the motor should go into operation after the shaft is set by the center gauge.
- (6) In case of the motor with antifriction bearings, supply the replenishment amount of the grease which is indicated on the bearing name plate during the trial run.

## 7.2 Direct coupled tests

- (1) When starting a motor after being coupled with a machine, it shall be no-load, and cut off the power source immediately after starting. While it is rotating freely by inertia, the following items should be checked.
  - a) Confirm that the bearing oil ring is turning normally.
  - b) Confirm that there are no abnormal noises or vibration, or there is no smell insulating materials burning.
- (2) If there is no abnormalities under the above inspection, restart the motor and inspect the bearing temperature, vibration, end play and oil ring rotation.
- (3) Continue the no-load running until the bearing temperature reaches saturation. After confirming that there are no abnormalities, proceed to full-load operations.

# 8. Normal operation

| 4          | <ul> <li>Do not operate with the cover of the terminal box detached.</li> <li>This may result in electric shock.</li> </ul>                                                                                          |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|            | <ul> <li>If a water cooler is used to cool the equipment, the cooling water shall be flow by specified temperature and flow rate.</li> <li>Failure to do this may result in overheating and lead to fire.</li> </ul> |  |  |  |  |  |
| 8          | <ul> <li>During operation, never touch or come near rotating parts.</li> <li>You may be caught in the mechanism and injured.</li> </ul>                                                                              |  |  |  |  |  |
| $\bigcirc$ | <ul> <li>Do not place flammable materials near the motor during operation.</li> <li>They may ignite and burnout.</li> </ul>                                                                                          |  |  |  |  |  |

| WARNING    |                                                                                                                                                                                           |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\bigcirc$ | <ul> <li>Do not operate after removing or disabling protective fixtures and safety equipment (including lids and covers)</li> <li>This may result in electric shock or injury.</li> </ul> |  |  |  |  |  |
| $\bigcirc$ | <ul> <li>Do not allow anyone other than those handling the equipment to go close to the motor during operating.</li> <li>This may result in electric shock or injury.</li> </ul>          |  |  |  |  |  |
| 0          | <ul> <li>At the power failure, switch off the power supply surely</li> <li>Failure to do this may result in injury.</li> </ul>                                                            |  |  |  |  |  |

| 0          | <ul> <li>If in doubt, switch off the drive immediately.</li> <li>Failure to do this may result in electric shock, injury, fire.</li> </ul>                                                                   |  |  |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|            | <ul> <li>Do not touch neither a hand nor the body to the external surface of the motor<br/>directly because it becomes high temperature during operation.</li> <li>This may lead to the burn.</li> </ul>     |  |  |  |  |  |
| $\bigcirc$ | <ul> <li>Do not operate the motor without being short-circuited of the current transformer's secondary terminals.</li> <li>This may arise a high voltage between the terminals and damage the CT.</li> </ul> |  |  |  |  |  |
| 0          | <ul> <li>For motors equipped with filters, clean the filter periodically.</li> <li>Filter clogging may result in overheating and burnout.</li> </ul>                                                         |  |  |  |  |  |

## 8.1 At starting

- (1) Confirm that the starting conditions have been established.
  - a) Oil is lubricated to the bearings in the case of forced lubrication system.
  - b) When a starting device is used, the circuit is set up to suit the starting conditions.
- (2) During the starting, check that the following starting conditions are normal.
  - a) Starting current
  - b) Starting time
- (3) In case of starting failure, follow the conditions of starting duty.

## Notice

■Wait for 10 sec to restart after the power source is cut off and the motor stops completely.

- When the motor is restarted immediately after the power source was cut off, even if restarting is possible, the motor is likely to be damaged because of an abnormal starting current caused by the residual induced voltage. For details, refer to Section 14.1 "starting duty of motor" (page 81).

- (4) To restart after a long-term stop of two weeks or more, check the following.
  - a) Insulation resistance measurement of the motor circuit.
     When it does not satisfy the values noted in Section 14.3, dry with a space heater, etc., and restart after the insulation resistance has recovered.
  - b) The oil level should be in the indicated line.
  - c) Upon starting, the noise, vibration and oil ring turning condition should be as usual.
  - d) Conduct the routine inspection of Table 9-2 (page 56).
- (5) Starting abnormalities

Check by Table 10-1 (page 62) and Table 10-2 (page 63). When the cause and conditions cannot be determined, contact us.

## 8.2 At running

During operation, check by Table 9-2 (page 56) and Table 9-3 (page 57) to confirm that there are no abnormalities.

## 9. Maintenance

The service life of motor is dependent largely upon maintenance. Record the data at regular intervals according to the following maintenance and inspection standard. The data logging makes clear the trend of motor conditions to prevent troubles.

Use the sheet for the operation record shown in Appendix 5.

| DANGER |                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 4      | <ul> <li>Before any work is started on the machines, particularly before covers are removed from live parts, make sure that the machine has been correctly disconnected from the supply.</li> <li>Conducting operations with live wires may result in electric shock.</li> <li>In order to prevent the misoperation during work, hang an "operation prohibition" tag on the opened circuit breaker.</li> </ul> |  |  |  |
| 0      | <ul> <li>Use the tightening torque (*) specified when tightening bolts.</li> <li>If bolts are not tightened to the proper torque, they may break or may result in overheat and fire.</li> <li>* Please refer to Table 6-6 (page 39) for details.</li> </ul>                                                                                                                                                    |  |  |  |

| WARNING |                                                                                                                                                                                              |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | <ul> <li>Connect the power cable according to the connection wiring diagram in the terminal box or the manual.</li> <li>Failure to do this may result in electric shock.</li> </ul>          |  |  |  |
| 0       | <ul> <li>Only qualified persons inspect around the brush mounted on the motor according to the manual.</li> <li>Failure to do this may result in electric shock or the mechanism.</li> </ul> |  |  |  |

| 0 | <ul> <li>The specified repair, maintenance, and overhaul must be carried out regularly by trained service person.</li> <li>Failure to do this may result in electric shock, injury and fire.</li> </ul>                                  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0 | <ul> <li>Rope off the work area to prevent people other than work personnel from entering.</li> <li>Failure to do this may result in electric shock or becoming caught in the machinery.</li> </ul>                                      |  |  |  |
| 0 | <ul> <li>When working at elevations of more than 1.5 meters, be sure to wear a safety belt.</li> <li>If you fail to do this, you may fall and be injured.</li> </ul>                                                                     |  |  |  |
| 0 | <ul> <li>Check the main terminal box periodically and check that there are not corrosion, deterioration of packing, etc.</li> <li>There is fears of the earth fault, the short-circuit, and the terminal box dispersion, etc.</li> </ul> |  |  |  |

## 9. Maintenance (Continuation)

|            | <ul> <li>When using a source of flame with the bearing section dismantled, be careful of the following:</li> <li>Wipe away any lubricant from the bearings.</li> <li>Be sure to protect the bearing section from being heated.</li> <li>Use sources of flame only in places where there is no danger of fire.</li> <li>Do not use heaters, cigarettes or other general sources of flame near the bearing section.</li> <li>Failure to do these may result in fire.</li> </ul> |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc$ | <ul> <li>Do not place flammable materials near the motor.</li> <li>They may ignite and burnout.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                    |
|            | <ul> <li>During and immediately after measuring the insulation resistance, the terminals<br/>may in part carry dangerous voltages and must not be touched.</li> <li>This may result in electric shock.</li> </ul>                                                                                                                                                                                                                                                             |
|            | <ul> <li>Do the regreasing or discharging in accordance with manual not to touch the rotating parts.</li> <li>Failure to do this may result in injury.</li> </ul>                                                                                                                                                                                                                                                                                                             |
| 0          | <ul> <li>For motors equipped with filters, clean the filter periodically.</li> <li>Filter clogging may result in overheating and burnout.</li> </ul>                                                                                                                                                                                                                                                                                                                          |
|            | <ul> <li>Do not approach or touch to a rotating or live part at the visual inspection around brush.</li> <li>This may result in electric shock or injury.</li> </ul>                                                                                                                                                                                                                                                                                                          |

## 9.1 Contents of inspection

The inspection of the motor may be divided into the following two groups according to their contents.

## 9.1.1 Daily inspection

Inspect the motor by a visual check, sense of touch, sense of hearing, etc. on its external appearance.

## 9.1.2 Periodic inspection

- (1) Simplified inspection After dismounting the motor and its cover, inspect the coil end and the bearing metal especially.
- (2) Precise inspection Remove the rotor from the motor, and inspect detail minutely.

In addition to a motor, perform a periodical maintenance to auxiliary machinery, such as a lubricating device, based on each manual.

## 9.2 Interval of periodic inspection

The basic idea for maintenance inspection is systematic monitoring. For this purpose, it is important to carry out the inspection continuously at proper intervals on necessary items. The extent and interval of the periodic inspection should be determined by taking the operation environment, starting duty, the starting time, and importance to the driven machine, into account.

(1) Simplified inspection

Simplified inspection should be performed between precise inspections, at your convenience. (Every two years)

- (2) Precise inspection
  - a) Initial inspection

1-2 years after starting operation is recommended.

There are cases where so-called initial failures are induced by causes such as the structural adaptation to the environment, entry of foreign objects during transportation or assembly at site, fit of structures, etc. The maintenance inspection that removes these initial failure factors at the proper time after starting operation is extremely effective for long-term trouble-free operation.

b) Overhaul after the initial inspection
 About every 4 years after the initial inspection is recommended.

Refer to Section 13 "Instruction of disassembly and reassembly" (page 66-88) for the procedure of the disassembly and reassembly of a motor.

## 9.3 Major inspection items

At the time of the daily inspection and regular inspection, the inspection should be carried out according to maintenance and inspection standards as shown in Table 9-2 to 9-8 (page 56 to 61), including the following major inspection items.

(1) Check for the looseness of stator coil wedges and stator coil end bound by strings

The core slot part of the stator coil and the coil end part are prevented from looseness caused by the electromagnetic vibration acting on the coils by means of wedges and binding strings. The coil, wedges, spacers and binding strings, etc. are composed of insulators, and sometimes the wedges and binding strings become loose due to electromagnetic vibration during operation and the changing fit from the heat cycle. If these are left for a long period, insulator wear off and insulation may break down because the coils are caused to oscillate by the electromagnetic force and mechanical vibration. Therefore, it is necessary to inspect them at regular interval.

(2) Dust adhering to the stator coil and ventilation duct space of the core Dust adhering to the stator coil will worsen the thermal conduction, and dust adhering to ventilation duct space of the core will reduce the amount of cooling air. Both causes lead to increase of temperature rise.

In case dust adhesion is found, either determine the cleaning interval appropriate to the dust quantity or take countermeasures to prevent dust intrusion.

(3) Check for the looseness, dislodgment of soldered parts and axial movement for rotor bars In the case of the squirrel cage type induction motor, fatigue progress on the rotor bars, the short-circuit rings and its soldered part because of thermal stress and electromagnetic force caused by inrush current at the starting time and centrifugal force caused by rotation act on them. When checking the rotor at the regular inspection, etc., there may be cases where the rotor bars are slackened, all of the rotor bars shifted in the axial direction, and the soldered parts between the rotor bars and the short-circuit ring are partially dislodged. If operation continues under this condition, cracks and breakage may develop in the rotor bar end part, the end part is expanded in the radial direction by the centrifugal force, thus causing damage to the stator coil and developing insulator breakdown. Therefore periodic inspection of these items is important.

(4) Checking the looseness of the stator core saddle plate stud and bolt fastening parts

The saddle plate which supports the stator core is fixed to the frame with studs and nuts (these are bolts if the machine is bipolar) for frame 710 and more motors. Due to torque reactions and machine vibrations resulting from operation, the stud and bolt fastening parts may become loose. Leaving this unattended for a long time may cause the adjustment plate to fall off or the stator to move thus resulting coming in contact with the rotor. Therefore, it is necessary to periodically check the looseness of the stud and bolt fastening part and tighten the bolts more.

(5) Sleeve bearing

The sleeve bearings must be maintained and checked on proper schedules adapted to the operation conditions of the machine. Refer to Section 6.5 "Lubricant" for an exchange of lube.

- (5)-1 Daily maintenance
  - a) Bearing temperature

Abnormal bearing temperature can be detected through the comparison of the accumulated records of daily data, and for this reason, daily operation data records are important.

The bearing temperature is measured by any following methods:

- i) Use of a dial thermometer, thermocouple, R.T.D. or other accessory instruments.
- ii) Use of a bar thermometer.

A bar thermometer is inserted into the measuring hole of the bearing housing as shown in Fig. 9-1. (This hole is normally plugged, but the plug is removable to allow the installation of a dial thermometer or the like instrument.)

When installing instruments into this hole, contact us to prevent oil leakage.

iii) With forced feed lubrication type bearings, the bearing temperature may be known from the temperature of the outlet oil, in addition to the methods (i) and (ii). Regardless of the method, when abnormal bearing temperature is detected, the bearing must be inspected immediately.

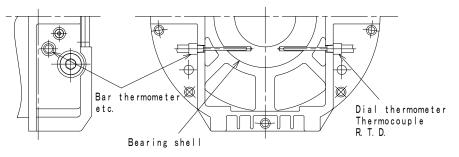
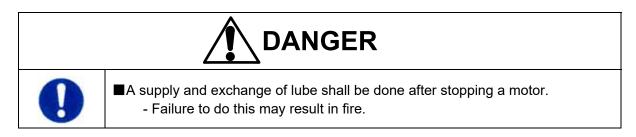
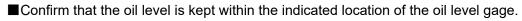
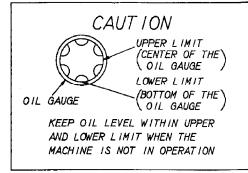




Fig. 9-1 Measuring holes for bearing temperature


Since oil viscosity decreases in winter or cold regions, the bearing temperature may rise. In this case, replace the lubricant with one having better low-temperature characteristics, or, in the case of a forced feed lubricant type, it is recommended that a heater is installed in the oil tank to maintain the oil at an optimum temperature.

## b) Oil quantity


i) Self cooled type



## Notice



• Refer to the label for oil level which is attached on the motor.



- Excessive oil supply causes leakage.
- Shortage of oil supply leads to excessive temperature rise, and the bearing metal may burn.

Remove the upper plug (see Fig. 13-1 in page 67), and fill lubricant specified in the outline drawing. The mark on the motor oil level gauge indicates the proper oil level with the machine still. While operating the machine, the oil level may vary slightly.

ii) Forced feed lubrication type

## Notice

■Confirm that the feed oil pressure is correct with the pressure gauge, and the oil outlet flow is correct with the oil sight gauge.

- Excessive oil supply causes leakage.
- Shortage of oil supply leads to excessive temperature rise, and the bearing metal may burn.
- Be sure to install the outlet oil piping at a down-grade of 1/30 to 1/50 in the oil return direction.

Be sure to flush the piping interior and the circulation devices before starting operation. Do not flow the flushing oil into the bearing, because it contains the foreign matter that was present in the piping. For details, refer to Section 4.9 "Piping".

c) Oil ring

Check the oil ring rotation by seeing directly from the sight glass or by using the mirror.

#### d) Oil leakage

Check the bearing, piping and oil feeder, etc. for the absence of oil leaking.

Since the oil seal at the shaft penetration part is a contacted type (floating) seal, the lubrication oil may ooze from the clearance and drip down to the lower part of the bearing housing, even in a normal condition.

e) Long term shutdown

When the motor is left off duty for a long time, or stored as a stand-by unit, be sure to turn the rotor while supplying oil on the journal once in two weeks to prevent rusting in the journal.

#### (5)-2 Yearly maintenance

a) Checking bearing

Remove the bearing housing upper half, and check the contact pattern on the bearing metal surface for uniform contact, and check the journal for surface damage.

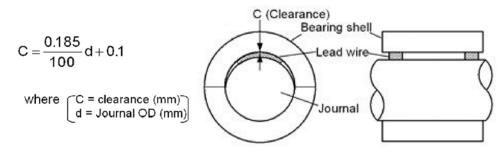
- b) Checking oil ring
   Check the oil ring for abnormal side wear, for deformation and for loose joint screws.
- c) Changing lubricant

| DANGER     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\bigcirc$ | ■Do not place flammable materials near the motor They may ignite and burnout.                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|            | <ul> <li>When using a source of flame with the bearing section dismantled, be careful of the following:</li> <li>Wipe away any lubricant from the bearings.</li> <li>Be sure to protect the bearing section from being heated.</li> <li>Use sources of flame only in places where there is no danger of fire.</li> <li>Do not use heaters, cigarettes or other general sources of flame near the bearing section.</li> <li>Failure to do these may result in fire.</li> </ul> |  |  |  |
|            | <ul> <li>A supply and exchange of lube shall be done after stopping a motor.</li> <li>Failure to do this may result in fire.</li> </ul>                                                                                                                                                                                                                                                                                                                                       |  |  |  |

Change interval of the lubricant oil is variable, depending on such conditions as the ambient temperature, ambient cleanliness level, operation condition, the severity degrees, etc. Refer to Section 6.5 "Lubricant" for the details.

#### (5)-3 Maintenance and inspection at periodical overhauling

The motor should be disassembled, and check all the parts at periodic inspection. For the sleeve bearing, inspect it in the same way as in the above Section 9.3 (5)-2 "Yearly maintenance", and also executes the following:


a) Measuring bearing clearance

Measure the journal OD and bearing metal ID at several positions with a micrometer to find the bearing clearance. There is one simple way to measure clearance without taking apart the motor as follows:

- i) Insert a lead wire between the journal and the bearing shell bore before removing the bearing shell lower half, and then cover the bearing sell upper half in place.
- ii) Clamp the bearing housing halves together.
- iii) The thickness of the pinched and flattened lead wire, as measured with a micrometer, is the bearing clearance.

In this procedure, use a lead wire of diameter which is larger than the clearance approximately by 5/100 to 10/100 mm.

Evaluate the clearance by the following equation, and if the clearance exceeds the calculated value, bearing metal must be exchanged.



#### b) Measuring journal insulation resistance

For those bearing which are equipped with a shaft current arrestor, measure its insulation resistance with a 500V megger. If there are measurements at least 0.5 M $\Omega$  at the time of the motor disassembly shall be acceptable.

c) Repair

Bearing problems should be handled as shown in Table 9-1. Execute the respective repair.

| Trouble, etc.                                                        | Countermeasure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cleaning                                                             | Thoroughly clean the oil grooves, oil outlet holes, thermometer<br>insertion holes, and the oil inlet/outlet for a forced feed type, with<br>clean detergent.<br>Finally, dry the bearing with soft and lint-free cloth, or with air blow.                                                                                                                                                                                                                                                                                                                                      |
| Uneven contact with<br>journal                                       | Careful observation of the white metal surface reveals the contact<br>pattern. When a locally concentrated contact pattern is observed,<br>examine whether the motor coupling condition is correct, etc. and if<br>the bearing itself is the cause, scrape off the metal from the surface<br>area where the contact pattern is concentrated, to obtain uniform<br>contact.<br>In this procedure, check the contact by applying red oxide of lead<br>thinly to the journal, and take care not to remove too much babbitt<br>metal at once, and remove only the required minimum. |
| The thrust surface is<br>partially in contact, or<br>abnormally worn | Check whether the bearing has not been assembled in the wrong<br>orientation, the motor itself has been leveled well, the end play is<br>proper, or other external conditions are in order. When the cause is<br>in the bearing itself, correct the metal surface by scraper, as above.                                                                                                                                                                                                                                                                                         |
| Eccentricity of the oil<br>ring                                      | Correct it by turning on a lathe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Loosening of the oil<br>ring joint screws                            | Carefully check the screw tightness at inspection.<br>If the screw has loosen, use a screw of larger size, and re-cut the<br>internal thread with a larger tap.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The metal surface<br>shows minor scratches<br>or small dents         | Smooth the surface with a scraper, and when the scratches or dents<br>are too deep, carefully remove the burr and smooth the bearing metal<br>edges.<br>Take care not to remove too much babbitt metal at once, and remove<br>only the required minimum.                                                                                                                                                                                                                                                                                                                        |
| Electrolytic erosion is found                                        | Check the insulation between the bearing shell and the bearing<br>housing, and that of the thermometer, to completely shut off the shaft<br>current.<br>Repair the babbitt metal surface with a scraper.                                                                                                                                                                                                                                                                                                                                                                        |
| Bearing has seized or flaked                                         | Replace the bearing metal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Journal surface has<br>rusted                                        | Polish the surface with oil-soaked hemp rope using chromium oxide powder.<br>When the rust is excessive, use an emery paper.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Table 9-1 Repair

#### (6) Antifriction bearing

The Antifriction bearings must be maintained and checked on proper schedules adapted to the operation conditions of the machine. Refer to Section 6.5 "Lubricant" for a supply and an exchange of a grease

(6)-1 Daily maintenance

Notice
When opening the bearing drain cover, take great care not to allow the entry of dust or iron powder, etc. to prevent damage to the bearing.
Also take care not to allow foreign matter entry when storing grease for refill or injecting grease with a grease gun.
Unless some sign of fault is evident, the bearing should not be opened.

a) Bearing noise during operation

Defects in rolling bearings can most conveniently be detected by their running noise. Listen to carefully to the bearing noise with a stethoscopic rod. Typical bearing noise types are as follows:

i) Squeak

The tone is like squeaking metallic materials and it is generated in the case of bad lubrication condition or adhesion condition, or excess radial bearing clearance. They generate more frequent in winter, and tend to temporarily disappear of faint when grease is added. It has been confirmed that bearing temperature does not rise and there is no problem for bearing or grease life when the noise is judged to squeak noise.

ii) Sliding noise

Sliding noise causes from the minor irregularity on the raceway surface of the outer ring or on the rolling element's surface. As long as it is simple and soft noise, it is harmless.

iii) Knocking noise

Knocking vibration noise is produced when the radial bearing clearance is excessive, or the outer ring is installed in misalignment.

iv) Muddy noise

Intermittent muddy noise indicates the presence of dust or magnetized metal particles in the bearing. Continuous muddy noise indicates early flaking on the rolling elements or raceway surfaces, or electrolytic erosion. It occurs at high speeds.

- v) Buzzing noise
  - ① Reverberating vibration noise resulting from abnormal deformation in the bearing housing by the rotor weight occurs when its amplified deformation is conducted to the outer ring of the bearing.
  - ② When the grease lubrication effect is faulty, the rolling elements locally slip relative to the raceway surfaces of the inner and outer rings, and produce roaring noise.
  - ③ When the shaft is eccentric or not accurately square, vibration and squeaking roar are produced.

This noise is especially loud with roller bearings. At low speeds, the noise is loud, and at high speeds, fine high-frequency noise is produced.

vi) Roller dropped out noise, ball dropped out noise

These dropped out noises are produced when the bearing is subject only to radial load at low speed. When the rolling elements leave the loaded position and enter the unloaded position, they become free to move, and drop under gravity to collide with the cage or the raceway, producing noise.

#### b) Bearing temperature

Rolling bearings may not be in abnormal conditions even when the temperature is high, and individual study is required to evaluate their conditions. When grease with low cone penetration is used in a high speed bearing, the bearing temperature rises, but this is because of the intensive stirring of the grease, and as long as the temperature is within the allowable range of the grease, no special measure is required. However, temperature rise in a manner significantly different from normal can be an indication of some faults such as excess grease, deteriorated grease and flaking, so that daily recording of the bearing temperature is necessary.

The temperature of rolling bearings can be measured with a dial thermometer, a thermocouple, or a R.T.D, but a bar thermometer attached to the bearing housing with a putty is also satisfactory.

Daily monitoring and recording of the temperature will enable the detection of bearing faults.

c) Grease leakage

Inspect the bearing area for grease leakage.

d) Bearing vibration

Daily recording of the vibration on bearings can discover abnormal vibration. Faults such as flaking, abrasion, denting, galling, breaking and electrolytic erosion produce loud noise, heating and vibration, and demand bearing replacement, but when proper measures are taken at the early stage of faults, accidents are avoided.

The following are representative diagnostic guidelines:

- i) When vibration and noise increase in relatively short time, the load condition should be checked.
  - ④ Excessive load such as belt tension
  - (5) Excessive thrust load due to the heat expansion of motor or the directly coupled machine.
  - 6 Excessive thrust load due to the inadequacy in direct coupling, etc.
  - ⑦ Excessive radial load to distorted foundation or introduced in the course of installation.
- ii) With a ball bearing, axial vibration in an abnormally high frequency is observed sometimes. This is a resonance of the natural frequency of the vibration system consisting of the mass of the bearing outer ring and the axial elasticity of the rolling elements with the random waving. In this case, vibration occurs and fades very irregularly. Occasionally, the bearing area of the bearing housing produces abnormal beat resonance. In this case, the following counter measures must be taken:
  - ① Replacing the bearing
  - ② Applying some preload to the thrust direction of the outer ring.
  - ③ Changing the grease with one of better lubrication effect

- (6)-2 Yearly maintenance
  - a) Grease change or grease-up

Bearing grease has definite service life, and after its life, it deteriorates and decreases. If the motor is run with the bearing filled with deteriorated grease, the bearing becomes heated and eventually burns. Replace the old grease with new grease. The grease change or replenish intervals are given on the bearing name plate. Add grease during operation as follows:

- i) Clean the area around grease filler by wiping to remove dirt.
- ii) By injecting grease into grease filler with a grease gun, the old grease is pushed out of the drain port.
- iii) When the injection volume according to the bearing nameplate has been injected, stop injecting, and let the motor run a while, with the cover of the grease drain port open to allow excess grease to flow out.
- iv) If the drain cover is closed without discharging the excess grease, the bearing may heat abnormally. When no more grease is discharging, close the drain cover.

#### (6)-3 Maintenance at periodical overhaul

In the course of the periodical overhauling, various parts of the motor are checked, and as far as the bearing is concerned, the check is the same as the "yearly maintenance", with the addition of the following.





Shut down all power sources before starting periodic inspection.

- Failure to do this may result in electric shock or injury.
- In order to prevent the misoperation during work, hang an "operation prohibition" tag on the opened circuit breaker.
- a) Cautions at removing bearings
  - When removing the bearing, pay attention to the following cautions:
  - i) When a bearing is removed, be sure to install a new bearing, without re-using the removed bearing.
  - ii) Carefully wash and clean the area around the bearing, including the shaft, the bearing housing and the oil shield, and carefully keep the interior of the grease feed pipe clean.
  - iii) When disassembling and reassembling the motor, be careful in handling the insulation for blocking shaft current, inserted in the non-drive end side bearing housing. Take care also not to allow current conducting dust to deposit in this area. For the exact location of the insulation, refer to Fig. 13-12, the bearing structural drawing. Where a bearing thermometer is installed, the element is also insulated, and due caution is required in handling it.
- b) Measuring insulation resistance

To evaluate the shaft current blocking insulation, measure its insulation resistance in the course of trial run after reassembling the motor, with a 500V megger. At least  $0.5M\Omega$  at the time of motor disassembly shall be acceptable.

(6)-4 Long-period out of operation and storage

Motors left out of operation for a long period of time, or stand-by motors should be greased once in 6 months while turning.

Spare bearings must be coated with rust-preventive oil, oil-resistively packed, sealed in a case, and stored in a dust-free, cool and moisture-free place. Large bearings should be placed on a flat shelf.

## 9.4 Commissioning after inspection

Execute the test run after the maintenance inspection according to the contents of Section 6 "Preparations and inspections before trial run" (page 32 to 39) and Section 7 "Implementation of trial run" (page 40 to 41).

|                          | Insp                                     | ection proce | dure                                   |                                                                                                                          |
|--------------------------|------------------------------------------|--------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Category                 | Subject of                               | Inspection   | Method of                              | Requirements                                                                                                             |
|                          | inspection                               | cycle        | inspection                             |                                                                                                                          |
| 1. Power<br>source       | Voltage                                  | Daily        | Voltmeter                              | Limit: Inside of zone B in Fig. 14-1                                                                                     |
| Source                   | Frequency                                | Daily        | Frequency<br>meter                     | Limit: Inside of zone B in Fig. 14-1                                                                                     |
| 2. Running               | Vibration                                | Weekly       | Sense of                               | Where the vibration is felt to increase over                                                                             |
| conditions               |                                          |              | touch and                              | ordinary level, measure the value.                                                                                       |
|                          | Current                                  | Daily        | vibrometer<br>Ammeter                  | Judge the value according to Section 14.4.1<br>The current shall be less than the rated value,<br>and shall be in order. |
|                          | Odor                                     | Daily        | Sense of                               | No burning smell.                                                                                                        |
|                          |                                          |              | smell                                  |                                                                                                                          |
|                          | Noise                                    | Daily        | Sense of<br>hearing and<br>stethoscope | Check the noisy parts and use a stethoscope if necessary.                                                                |
|                          | Temperature<br>(frame,bear-<br>ing,coil) | Daily        | Sense of<br>touch,<br>thermometer      | No change in temperature rise from the values at the initial time.                                                       |
|                          | Cover etc.                               | Weekly       | Visual                                 | No falling off and loosening of fixing bolts.                                                                            |
|                          | Ladder and platform                      | Weekly       | Visual                                 | No falling off and loosening of fixing bolts.<br>No corrosion                                                            |
| 3. Environ-              | Ambient                                  | Weekly       | Thermo-                                | Within the standard values and normal                                                                                    |
| ment                     | temperature<br>Ventilation               | Weekly       | meter<br>Visual check                  | No blockage in the ventilation grills, etc.<br>The motor blower, if working, is normal.                                  |
| 4. Bearing               |                                          |              |                                        |                                                                                                                          |
| 4.1 Sleeve               | Temperature                              | Daily        | Sense of                               | When the temperature is sensed as abnormal,                                                                              |
| bearing                  |                                          |              | touch,<br>thermometer                  | measure it with a thermometer.<br>Temperature limit: 95°C (reading value)                                                |
|                          | Oil level and<br>oil leakage             | Daily        | Visual<br>inspection                   | Be normal oil level.                                                                                                     |
|                          | Oil pressure                             | Daily        | Visual                                 | Be normal.                                                                                                               |
|                          | Oil rings                                | Daily        | Visual                                 | Be rotating smoothly.                                                                                                    |
| 4.2 Antifriction bearing | Rotating<br>noise                        | Daily        | Sense of hearing,                      | Be normal                                                                                                                |
| Ŭ                        |                                          |              | stethoscope                            |                                                                                                                          |
|                          | Temperature                              | Daily        | Sense of                               | When the temperature is sensed as abnormal,                                                                              |
|                          | (includes oil                            |              | touch,                                 | measure it with a thermometer.                                                                                           |
|                          | slinger)                                 |              | thermometer                            | Temperature limits (reading value):<br>Up to 100°C, measured by embedded sensor                                          |
|                          |                                          |              |                                        | Up to $95^{\circ}$ C, measured on surface of housing                                                                     |
|                          | Grease up                                | As           | Grease gun                             | Refill as required.                                                                                                      |
|                          | Grease up                                | specified    | Grease yun                             |                                                                                                                          |

 Table 9-2
 Maintenance and inspection standard - Daily inspection (during motor operation)

|           | Inspection procedure |            |              |                      |
|-----------|----------------------|------------|--------------|----------------------|
| Category  | Subject of           | Inspection | Method of    | Requirements         |
|           | inspection           | cycle      | inspection   |                      |
| 5. Cooler | Water                | Daily      | Visual check | No leak              |
|           | leakage              |            |              |                      |
|           | Water                | Daily      | Pressure     | Specified pressure   |
|           | pressure             |            | gauge        |                      |
|           | Water flow           | Daily      | Flow sight   | Flowing              |
|           |                      |            | Flow meter   | Be regular flow rate |

### Table 9-3 Maintenance inspection standard - Daily inspection (during motor operation)

#### Table 9-4 Maintenance inspection standard - Daily inspection (when the motor is stopped)

|                 | Insp          | ection proce | dure         |                                                |
|-----------------|---------------|--------------|--------------|------------------------------------------------|
| Category        | Subject of    | Inspection   | Method of    | Requirements                                   |
|                 | inspection    | cycle        | inspection   |                                                |
| 1. Investiga-   | Check         | Monthly      | Service log  | No abnormality                                 |
| tion            | failures in   |              |              |                                                |
|                 | operation log |              |              |                                                |
| 2. Appear-      | Damage and    | Monthly      | Visual check | Clean and make repairs                         |
| ance            | dirt on the   |              |              |                                                |
|                 | frame and     |              |              |                                                |
|                 | terminals     |              |              |                                                |
|                 | Cooler        | Monthly      | Visual check | Cleaning of found clogging                     |
|                 | tubes, air    |              |              |                                                |
|                 | ducts, and    |              |              |                                                |
|                 | filters       |              |              |                                                |
| 3. Bearing      |               |              |              |                                                |
| 3.1 Sleeve      | Oil contami-  | Monthly      | Visual check | No sludge babbitt metal chaffings or any other |
| bearing         | nation        |              |              | foreign objects                                |
| 3.2antifriction | Discharged    | Monthly      | Visual check |                                                |
| bearing         | grease        |              | Analysis     | or contamination in grease                     |
| 4. Earth brush  | The amount    | Monthly      | Visual check |                                                |
| (when           | of brush      |              |              | to Section 5.6(5) (page 31), and exchange      |
| attached)       | wear          |              |              | brushes according to the wear extent.          |

 Table 9-5
 Maintenance inspection standard - Regular inspection (Simplified inspection, field disassembly of the protective cover upper half and bearing housing upper half for inspection)

|               | Inspection procedure  |                    | dure          |                                                                                        |
|---------------|-----------------------|--------------------|---------------|----------------------------------------------------------------------------------------|
| Category      | Subject of            |                    |               | Requirements                                                                           |
| outogory      | inspection            | cycle              | inspection    |                                                                                        |
| 1. Investiga- | Check                 | 2 years            | Service log   | Make repairs if necessary                                                              |
| tion          | abnormalities         | -                  | g             |                                                                                        |
|               | in operation          |                    |               |                                                                                        |
|               | log                   |                    |               |                                                                                        |
| 2. Measure-   | Insulation            | 2 years            | Megger        | 1000V or more : More than 100 [MΩ]                                                     |
| ment          | resistance of         | ,                  | 00            | Less than 1000V : More than 5 [M $\Omega$ ]                                            |
|               | coils                 |                    |               |                                                                                        |
|               | Air gap               | 2 years            | Gap gauge     | $\frac{\text{Max, value} - \min, \text{value}}{\text{Max, value}} \times 100 \le 20\%$ |
|               | 0 1                   | ,                  | 100           | $\frac{1}{100} \times 100 \le 20\%$                                                    |
|               | <b>F</b> an           | 2                  |               |                                                                                        |
|               | Fan                   | 2 years            | Gap gauge     | Min 5mm                                                                                |
| 2 Appear      | clearance             | 2 1/2010           |               | Cleaning and repairs                                                                   |
| 3. Appear-    | Dirt or               | 2 years            | Visual check  | Cleaning and repairs                                                                   |
| ance          | painting on the frame |                    |               |                                                                                        |
|               | Terminals             | 2 years            |               | Repair if abnormal                                                                     |
|               | Filters               | 2 years<br>2 years |               | Clean and repair (Replace when necessary)                                              |
|               | Bolt joints           | 2 years<br>2 years |               | No loosening, falling off and damage                                                   |
|               | Motor                 | 2 years<br>2 years |               | No indentations or cracks                                                              |
|               | foundations           | z years            | VISUAI CHECK  |                                                                                        |
| 4. Stator     | Cores and             | 2 years            | Visual check  | No dust, oil, moisture and foreign objects                                             |
|               | coils                 | 2 youro            | violat offoor |                                                                                        |
|               | Cores                 | 2 years            | Visual check  | No unevenness, overheating, discoloring,                                               |
|               |                       | _ ,                |               | damage, rust, etc.                                                                     |
|               | Core ends             | 2 years            | Visual check  | No tumble or protrusion of air duct pieces,                                            |
|               |                       | ,                  |               | loosening or damage of core sheets                                                     |
|               | Coil ends             | 2 years            | Visual check  | No deformations, damage and dirt                                                       |
|               | Insulating            | 2 years            | Visual check  | No varnish spouting, void and tracking, etc.                                           |
|               | materials             |                    |               |                                                                                        |
|               | Wedges                | 2 years            | Visual check  | No loosening                                                                           |
|               | Coil                  | 2 years            | Visual check  | No shifting, getting out and loosening                                                 |
|               | supports              |                    |               |                                                                                        |
|               | Air                   | 2 years            | Knocking      | No loosening and cracks                                                                |
|               | deflectors            |                    | sound         |                                                                                        |
|               |                       |                    | Visual check  |                                                                                        |
| 5. Rotor      | Cores                 | 2 years            | Visual check  | No rust, loosening, dust, oil, moisture, other                                         |
|               |                       |                    |               | foreign objects, overheating, discoloring and                                          |
|               |                       |                    |               | damage                                                                                 |
|               | Connection            | 2 years            | Visual check  | No cracks and bar shifting                                                             |
|               | of rotor bars         |                    |               |                                                                                        |
|               | and end               |                    |               |                                                                                        |
|               | rings                 |                    |               |                                                                                        |

 Table 9-6
 Maintenance inspection standard - Regular inspection (Simplified inspection, field disassembly of the protective cover upper half and bearing housing upper half for inspection)

|                     | Inspection procedure     |          |                        |                                                                 |  |
|---------------------|--------------------------|----------|------------------------|-----------------------------------------------------------------|--|
| Category            | Subject of Inspection    |          | Method of              | Requirements                                                    |  |
|                     | inspection               | cycle    | inspection             |                                                                 |  |
| 6. Bearing          |                          |          |                        |                                                                 |  |
| 6.1 Sleeve          | Metal                    | 2 years  |                        | Lower metal to be in good working order                         |  |
| bearing             | Contact                  |          | bearing)               |                                                                 |  |
|                     |                          |          | Visual check           |                                                                 |  |
|                     |                          |          | (magnifying            | Upper metal to be free from contact marks                       |  |
|                     | Metal                    | 2 years  | glass)<br>Color check  | 50% or more                                                     |  |
|                     | adhesion                 | 2 years  | (PI)                   |                                                                 |  |
|                     | Metal                    | 2 years  | Micrometer             | Refer to Section 9.3(5)-3a)                                     |  |
|                     | clearance                |          |                        |                                                                 |  |
|                     | Oil slingers             | 2 years  | Thickness              | Within limit                                                    |  |
|                     |                          | -        | gauge                  |                                                                 |  |
|                     | Oil rings                | 2 years  | Visual check           |                                                                 |  |
|                     |                          |          |                        | No loosened setscrew                                            |  |
|                     | Oil                      | 2 years  | Visual check           | No dirt, deterioration and foreign objects                      |  |
|                     | End play                 | 2 years  | Thickness              | Within limit                                                    |  |
|                     |                          |          | gauge<br>Scale         | Refer to Section 4.6 Table 4-1                                  |  |
| 6.2 Antifriction    | Grease con-              | 2 years  | Visual check           |                                                                 |  |
| bearing             | termination              | 2 years  | VISUAI CITCOR          | Replace of grease                                               |  |
| 7. Instruments      | Dirt, damage             | 2 years  | Visual check           |                                                                 |  |
|                     |                          | -        |                        | damage                                                          |  |
| 8. Coupling         | Deviation of             | As       | Dial gauge             | Within tolerances                                               |  |
|                     | eccentricity             | required |                        | Refer to Section 4.6                                            |  |
|                     | and                      |          |                        |                                                                 |  |
|                     | parallelism<br>Centering | As       | Dial gauge             | Within tolerances                                               |  |
|                     | Centening                | required | Dial gauge             | Refer to Section 4.6                                            |  |
|                     | Direct                   | As       | Visual check           |                                                                 |  |
|                     | coupling                 | required |                        |                                                                 |  |
|                     | Damage                   | As       | Visual check           | No damage and breakage of key way                               |  |
|                     | _                        | required |                        |                                                                 |  |
|                     |                          |          | (Color check           | •                                                               |  |
|                     |                          |          | if required)           | coupling.                                                       |  |
| 9. Operation        | Abnormal                 | As       | Sense of               | No abnormality                                                  |  |
| on load             | noise,<br>vibration      | required | hearing,<br>touch, and |                                                                 |  |
|                     | abnormal                 |          | smell                  |                                                                 |  |
|                     | odor                     |          |                        |                                                                 |  |
|                     | Rotational               | As       | Visual check           | Normal rotational direction                                     |  |
|                     | direction                | required |                        |                                                                 |  |
| 10.Heat             | Crack or                 | As       | Visual check           |                                                                 |  |
| exchanger           | corrosion of             | required |                        | When crack or corrosion is found, replace the                   |  |
| (CACA cooler)       |                          | 2.405-   |                        | heat exchanger.                                                 |  |
| 11.Shaft<br>current | Protective device        | 2 years  | Visual check<br>Tester | After cleaning, measure insulation resistance:<br>0.5MΩ or more |  |
| Current             | Gevice                   |          | 1 63161                |                                                                 |  |
|                     |                          |          |                        | (at motor itself when disassembled)                             |  |

Table 9-7 Maintenance inspection standard - Regular inspection (Overhaul with rotor removal)

\* 4-year-cycle shows the interval from the initial inspection. The initial inspection shall be 1-2 years from the start of operation (Refer to Section 9.1)

|                       |                                               | nspection procedure                       |                                                |                                                                                                                       |
|-----------------------|-----------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Category              | Subject of                                    | Inspection                                | Method of                                      | Requirements                                                                                                          |
|                       | inspection                                    | cycle                                     | inspection                                     |                                                                                                                       |
| 1. Investiga-<br>tion | Check<br>abnormalities in                     | 4 years (*)                               | Service log                                    | Make repairs if necessary                                                                                             |
| 2. Measure-<br>ment   | operation log<br>Shaft level                  | 4 years (*)                               | Level meter                                    | Measure the level at both journals, and make sure that the difference is within 0.05 mm/m                             |
|                       | Coil insulation resistance                    | 4 years (*)                               | Megger                                         | More than specified values<br>Refer to Table 9-5                                                                      |
|                       | Space heater<br>insulation<br>resistance      | 4 years (*)                               | Megger                                         | More than $1k\Omega$ with a 500V megger                                                                               |
|                       | Air gap<br>Fan                                | 4 years (*)<br>4 years (*)                | Gap gauge<br>Gap gauge                         | Refer to Table 9-5<br>Min 5mm                                                                                         |
| 3. Appearance         | clearance<br>Dirt or painting<br>on the frame | 4 years (*)                               | Visual check                                   | Cleaning and repairs                                                                                                  |
|                       | Filters<br>Bolt joints<br>Motor               | 4 years (*)<br>4 years (*)<br>4 years (*) | Visual check<br>Visual check<br>Visual check   | <b>0</b> , 0                                                                                                          |
| 4. Stator             | foundations<br>Cores and                      | 4 years (*)                               |                                                | No dust, oil, moisture and foreign objects                                                                            |
|                       | coils<br>Cores                                | 4 years (*)                               |                                                | No unevenness, overheating, discoloring,                                                                              |
|                       |                                               |                                           |                                                | damage, rust, etc.                                                                                                    |
|                       | Core ends                                     | 4 years (*)                               | Visual check                                   | loosening or damage of core sheets                                                                                    |
|                       | Air ducts                                     | 4 years (*)                               | Visual check                                   |                                                                                                                       |
|                       | Coil ends<br>Insulating<br>materials          | 4 years (*)<br>4 years (*)                | Visual check<br>Visual check                   | No deformations, damage and dirt<br>No varnish spouting, void and tracking, etc.                                      |
|                       | Coil supports                                 | 4 years (*)                               | Visual check                                   | No shifting, getting out and loosening                                                                                |
|                       | Wedges<br>Coil binding<br>strings             | 4 years (*)<br>4 years (*)                | Hammering<br>Visual check<br>Sense of<br>touch | No withering, loosening and falling off<br>No shifting, loosening, discoloring and<br>deterioration                   |
|                       | Lead cable<br>and terminals                   | 4 years (*)                               |                                                | No damage, deterioration and deformation of<br>terminals<br>No dust, oil, moisture and adhering of foreign<br>objects |
|                       | Air deflectors                                | 4 years (*)                               | Visual check                                   | No abnormality in the welded part<br>No loosened bolts                                                                |
|                       | Space heaters                                 | 4 years (*)                               | Visual check                                   | No loosened fastener parts, dust, oil, moisture and adhering of foreign objects.                                      |
| 5. Rotor              | Cores                                         | 4 years (*)                               | Visual check                                   | No rust, loosening, dust, oil, moisture, other foreign objects, overheating, discoloring and damage                   |
|                       | Joint of rotor<br>bars and end<br>rings       | 4 years (*)                               | Visual check<br>Color check                    |                                                                                                                       |
|                       | Rotor bars                                    | 4 years (*)                               | Hammering                                      | No loosening.                                                                                                         |
|                       | Fans                                          | 4 years (*)                               | Visual check                                   | No deformation of fan blades                                                                                          |
|                       | Balance<br>weights                            | 4 years (*)                               | Hammering                                      | No loosening                                                                                                          |
|                       | Shaft journal                                 | 4 years (*)                               | Visual check<br>Sense of touch                 | No scars, knock marks, and pressing marks                                                                             |

Table 9-8 Maintenance inspection standard - Regular inspection (Overhaul with rotor removal)

\* 4-year-cycle shows the interval from the initial inspection. The initial inspection shall be 1-2 years from the start of operation (Refer to Section 9.1)

|                            | Inspection procedure                                |                | ure                                                               |                                                                                                        |
|----------------------------|-----------------------------------------------------|----------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Category                   | Subject of                                          | Inspection     | Method of                                                         | Requirements                                                                                           |
|                            | inspection                                          | cycle          | inspection                                                        |                                                                                                        |
| 6. Bearing                 |                                                     | ,              | •                                                                 |                                                                                                        |
| 6.1 Sleeve<br>bearing      | Metal contact                                       | 2 years        | (Overhaul of<br>bearing)<br>Visual check<br>(magnifying<br>glass) | Lower metal to be in good working order<br>Upper metal to be free from contact marks                   |
|                            | Metal adhesion                                      | 2 years        | Color check                                                       | More than 50%                                                                                          |
|                            | Metal clearance                                     | 2 years        | Micrometer                                                        | Refer to Section 9.3(5)-3a)                                                                            |
|                            | Oil slingers                                        | 2 years        | Thickness<br>gauge                                                | Within limit                                                                                           |
|                            | Oil rings                                           | 2 years        | Visual check                                                      | No deformation and serious wear<br>No loosened setscrews                                               |
|                            | Oil                                                 | 2 years        | Visual check                                                      | No dirt, deterioration and foreign objects                                                             |
|                            | End play                                            | 2 years        | Thickness<br>gauge, Scale                                         | Refer to Section 4.6, Table 4-1                                                                        |
| 6.2 Antifriction bearing   | Grease con-<br>termination                          | 2 years        | Visual check                                                      | Grease replacement                                                                                     |
| 7. Instruments             | Correction                                          | 4 years<br>(*) | Comparison with standard                                          | Within standard values                                                                                 |
| 8. Coupling                | Deviation of<br>eccentricity and<br>parallelism     | As required    | Dial gauge                                                        | Refer to Section 4.6                                                                                   |
|                            | Centering                                           |                | Dial gauge                                                        | Refer to Section 4.6                                                                                   |
|                            | Direct coupling                                     |                | Visual check                                                      | No loosened bolts and nuts.                                                                            |
|                            | Damage                                              | As required    | Visual check<br>(Color check<br>if required)                      | No damage and breakage of key way<br>No abnormal wear on tooth surface of the<br>gear coupling.        |
| 9. Operation<br>on load    | Abnormal noise,<br>vibration, and<br>abnormal smell | As required    |                                                                   | No abnormalities                                                                                       |
|                            | Rotational                                          | As required    | Visual check                                                      | Normal rotational direction                                                                            |
| 10.Cooler<br>(CACW cooler) | Inside<br>inspection                                | 4 years<br>(*) | Visual check                                                      | No abnormal corrosion and pinholes.                                                                    |
|                            | Hydraulic test                                      | 4 years<br>(*) | Hydraulic<br>test                                                 | No leakage and deformation.                                                                            |
| (CACA cooler)              | Inspection of<br>pipe                               | 4 years<br>(*) | Visual check                                                      | No crack or corrosion<br>When crack or corrosion is found, replace the<br>heat exchanger.              |
| 11.Piping                  | Damage                                              | 4 years<br>(*) | Visual check                                                      | Freedom from loosened fastenings, water leakage, oil leakage and corrosion.                            |
| 12.Shaft<br>current        | Protective<br>device                                | 2 years        | Visual check<br>Tester                                            | After cleaning, measure insulation resistance:<br>0.5MΩ or more<br>(at motor itself when disassembled) |

## 10. Troubleshooting

Table 10-1 shows the various troubles, their causes and countermeasures. If you consider the troubles serious, immediately contact us.

| Trouble           |                                         | Cause                                | Countermeasure                                     |
|-------------------|-----------------------------------------|--------------------------------------|----------------------------------------------------|
| 1. The motor will | The starting                            | Some interlocks have not yet         | Check for wrong wires and                          |
| not start.        | conditions have not                     | been released.                       | contacts on the circuit.                           |
| Even when the     | yet been prepared.                      | No voltage is supplied to the        |                                                    |
| main switch is    | The circuit from                        | starter.                             |                                                    |
| turned on, no     | power source to                         | Starting contactor is wrong.         |                                                    |
| sound is heard.   | motor main terminals                    | The fuses of two-phases are          | Exchange melted fuses.                             |
|                   | is wrong.                               | melted.                              | Check the main terminal.                           |
|                   | The stator winding of                   |                                      | Repair the detective stator                        |
| O The meter       | the motor is broken.                    | One phase first is malted            | winding.                                           |
| 2. The motor      | The motor condition                     | One phase fuse is melted.            | Check for wrong wires and contacts on the circuit. |
| generates         | remains one phase                       | One-phase of starter circuit is      | contacts on the circuit.                           |
| abnormal noise    |                                         | wrong.                               |                                                    |
| without starting  |                                         | Starting contactor is wrong.         |                                                    |
| up.               | Mechanical lock.                        | The driven machine is locked.        | Check the driven machine and                       |
|                   | Meenanical lock.                        | The coupling connection is           | coupling, and consider proper                      |
|                   |                                         | wrong (belting too tight:            | countermeasures.                                   |
|                   |                                         | misalignment; installation           |                                                    |
|                   |                                         | error, etc.)                         |                                                    |
|                   |                                         | Bearing is melted.                   |                                                    |
|                   |                                         | The metal contact in air gap         |                                                    |
|                   |                                         | due to bearing melting               |                                                    |
|                   | The stator winding of                   | One-phase is broken.                 | Repair the defective stator                        |
|                   | the motor is broken.                    |                                      | winding.                                           |
| 3. The protective | Starter failure.                        |                                      |                                                    |
| <b>,</b>          |                                         | Deterioration of insulation          | Repair the defective stator                        |
| main switch is    | shorted or earthed.                     | caused by overheat, vibration,       | winding.                                           |
| turned on.        | Machanical look                         | shocks, etc.<br>Same as item 2 above | Correct the relevantting                           |
|                   | Mechanical lock.<br>Improper setting of | Same as item 2 above                 | Correct the relay setting.                         |
|                   | protective relay.                       |                                      |                                                    |
| 4. Abnormal       | One-line fault;                         | Wire in circuit is broken.           | Check each line to locate                          |
| noise and         | unbalanced voltage                      | The fuse is melted.                  | defective points.                                  |
| vibration         | and alaries a voltage                   | Contact is wrong.                    |                                                    |
|                   | Mechanical                              | Unbalanced rotor                     | Overhaul inspection                                |
|                   | abnormalities of                        | Slackened core laminations           | ·                                                  |
|                   | motor                                   |                                      |                                                    |
|                   |                                         | Cracked end ring, ruptured           | Overhaul inspection                                |
|                   |                                         | bar                                  |                                                    |
|                   |                                         | Slackened core laminations           | Overhaul inspection                                |
|                   |                                         | Unbalance or contact of air gap      | Overhaul inspection                                |
|                   |                                         | Intrusion of foreign objects         | Overhaul inspection                                |
|                   | Oppillation in the                      | Bending or cracking of shaft         | Overhaul inspection                                |
|                   | Oscillating in the                      | Vibration of the driven              | Disconnect the coupled                             |
|                   | driven machine                          | machine                              | machine, and check for the                         |
|                   | Misalignment                            | Bending of shaft                     | causes.                                            |
|                   | msangrinent                             | Slackened coupling                   | Tighten up the coupling bolts.                     |
|                   |                                         | Improper connection with             | Make repairs                                       |
|                   |                                         | foundation                           |                                                    |

| Trouble                                 |                                                               | Cause                                                                                                                                                       | Countermeasure                                                                                                                   |
|-----------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 5. Excessive<br>temperature<br>rise and | Abnormalities in the power source                             | Unbalanced voltage, one-line<br>fault, wrong voltage or<br>frequency, or voltage drop                                                                       | Check the power source and starter for abnormalities.                                                                            |
| smoking                                 |                                                               | frequency, or voltage drop                                                                                                                                  |                                                                                                                                  |
|                                         | Overload                                                      | Overload caused by the fault of the driven machine                                                                                                          | Disconnect the motor, and<br>check for troubles.                                                                                 |
|                                         |                                                               | Excessive start and stop or                                                                                                                                 | Review the selection of motor.                                                                                                   |
|                                         | Poor cooling                                                  | excessive reverse running.<br>Clogged filter or intrusion of<br>foreign objects into the                                                                    | Cleaning                                                                                                                         |
|                                         | Defective windings                                            | ventilation grille.<br>Stator windings are shorted or<br>earthed.                                                                                           | Repair windings.                                                                                                                 |
|                                         | Mechanical fault                                              | The metal contact in air gap<br>Overheat of bearing caused<br>by bad directed coupling such                                                                 | Same as item 2                                                                                                                   |
| 6. Seizure of sleeve bearing            | Shortage of lubricant                                         | as excessive belt tension,<br>misalignment, etc.<br>Fault of rotation caused by<br>deformation or abrasion of oil<br>ring                                   | Exchange or repair of oil ring.                                                                                                  |
|                                         | Defective lubricant                                           | Shortage of supply oil quantity<br>Oil leakage<br>Oil circulation pump failure,<br>blocked oil piping, or oil leak<br>Change in quality or<br>deterioration | Supply of oil<br>Check for the causes<br>Disassembly investigation and<br>correct<br>Check color and acid value.<br>Oil exchange |
|                                         | Failure of bearing                                            | Unsuitable oil viscosity<br>Mixture of water or foreign<br>substances (metal sludge or<br>dust)<br>Excessive bearing clearance                              | Oil exchange<br>Study contamination route.<br>Oil exchange<br>Exchange the bearing                                               |
|                                         | metal contact                                                 |                                                                                                                                                             |                                                                                                                                  |
|                                         |                                                               | Defective contact of bearing<br>caused by abrasion or<br>vibration, etc.                                                                                    | Correct                                                                                                                          |
|                                         | Defective bearing<br>insulation                               | Contamination, water, wet by oil, or defective pipe insulation                                                                                              | Clean and check insulation resistance.                                                                                           |
|                                         | Excessive vibration<br>or abnormal thrust                     | Misalignment of direct<br>coupling or installation, shaft<br>bending, or impact from<br>machine side                                                        | Correct alignment<br>Check load machine                                                                                          |
| 7. Defect of<br>grease<br>lubricated    | Pronounced<br>retainer sound                                  | Vibration of the retainer, wear,<br>or shortage of grease                                                                                                   | Replenish the grease.<br>If the sound recurs, replace<br>the bearing.                                                            |
| antifriction                            | Squeak sound                                                  | Lack of grease                                                                                                                                              | Replenish the grease.                                                                                                            |
| bearing                                 | (No problem and no effect on bearing life unless the sound is | Defective lubrication                                                                                                                                       | Change the grease type to soft and good oily one                                                                                 |
|                                         | so large as to cause vibration)                               | Excessive radial clearance                                                                                                                                  | Replace the bearing with having smaller clearance.                                                                               |
|                                         | Flaw sound                                                    | Scratches on the raceway surface or rolling elements                                                                                                        | Replenish the grease.<br>Replace the bearing.                                                                                    |
|                                         | Dust sound                                                    | Mixture of dust or magnetized iron powder                                                                                                                   | Clean or replace the bearing.                                                                                                    |
|                                         | Howling or resonant sound                                     | Defective lubrication,<br>misalignment of shaft center,                                                                                                     | Change to good oily grease.<br>Correct for optimal preload or                                                                    |
|                                         |                                                               | or improper perpendicularly                                                                                                                                 | fit.                                                                                                                             |

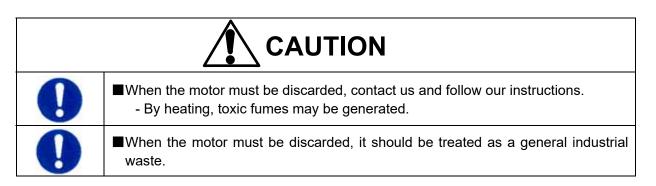
| Trouble      |                        | Countermeasure                                               |                                                      |
|--------------|------------------------|--------------------------------------------------------------|------------------------------------------------------|
| 7. Defect of | Increase of vibration  | Scratched or worn bearing, or                                | Replace the bearing.                                 |
| grease       |                        | mixture of foreign substances                                |                                                      |
| lubricated   |                        | Shortage of grease                                           | Replenish the grease.                                |
| antifriction |                        | Defective lubrication by                                     | (Inject a new grease and                             |
| bearing      |                        | deterioration                                                | discharge an old grease)                             |
|              |                        | Improperly mounted bearing                                   | Disassembly and reassembly                           |
|              | Increase of            | Scratched bearing or mixture                                 | Replace the bearing.                                 |
|              | temperature rise       | of dust                                                      |                                                      |
|              | (The temporary         | Shortage of grease                                           | Replenish the grease.                                |
|              | temperature rise       | Defective lubrication by                                     | (Inject a new grease and                             |
|              | following injection is | deterioration                                                | discharge an old grease)                             |
|              | not a problem)         | Overgrease                                                   | Inject the grease with                               |
|              |                        |                                                              | discharge port open while                            |
|              |                        |                                                              | running the machine.                                 |
|              |                        | Improperly mounted bearing                                   | Correct the mounting.                                |
|              |                        | Excessive bearing load                                       | Remove the cause of the                              |
|              |                        | <b>.</b>                                                     | excessive bearing load                               |
|              |                        | Overload                                                     | Remove the overload                                  |
|              | Flaking                | Excessive thrust loads                                       | Examine thrust loads                                 |
|              | (Local peeling of      | Improperly adjusted assembly                                 | Adjust the preload at mounting                       |
|              | metallic surface)      |                                                              | properly                                             |
|              |                        | Misaligned bearing centers or                                | Perform assembly properly.                           |
|              |                        | inclined bearing installation                                | Replace it to a bearing with                         |
|              |                        |                                                              | larger clearance.                                    |
|              |                        | Scratches caused by                                          | Be careful at assembly.                              |
|              |                        | excessive force at assembly                                  | Confirm mounting dimensions                          |
|              |                        | Foreign matter caught in fit                                 | Clean or correct the fit surface                     |
|              |                        | surfaces                                                     | of the shaft and housing                             |
|              |                        | Local deformation by the                                     |                                                      |
|              |                        | scratches                                                    | Developed the based on the                           |
|              |                        | Improper bearing clearance                                   | Replace the bearing.                                 |
|              |                        | Defective lubrication                                        | Replenish the grease.                                |
|              |                        | Rusting                                                      | Cleaning                                             |
|              |                        |                                                              | Be careful at assembly.                              |
|              | Cracked rolling        | Abnormal impact while there is                               | Replace the bearing.                                 |
|              | elements and           | excessive bearing clearance                                  | Be careful at assembly.                              |
|              | raceway surface        | Jammed by contaminants at                                    |                                                      |
|              |                        | mounting                                                     |                                                      |
|              |                        | Wear by loose fit tolerance                                  |                                                      |
|              |                        | Slide on the end face due to                                 |                                                      |
|              | Chinned the of         | loosely tightened retainer                                   | Deplece the bearing                                  |
|              | Chipped rib of         | Hit at mounting the bearing                                  | Replace the bearing.                                 |
|              | bearing inner ring     | Evenesive force to the rolling                               | Be careful at assembly.                              |
|              | Bruises of the rolling | Excessive force to the rolling                               | Replace the bearing.                                 |
|              | element pitch          | element at mounting                                          | Be careful at assembly.<br>Be free from contaminants |
|              | Spotted bruises        | Entering a foreign matter into                               | De nee nom contaminants                              |
|              | Moor of the rolling    | bearing unit at standstill                                   | Deplese the bearing                                  |
|              | Wear of the rolling    | Vibration during transport<br>External vibration transmitted | Replace the bearing.<br>Make stiff base.             |
|              | element pitch          |                                                              |                                                      |
|              | Abbornel               | from the soft base                                           | Minimize external vibration.                         |
|              | Abnormal wear          | Mixture of foreign substances,                               | Replace the bearing.                                 |
|              |                        | rust, or shortage or                                         | Improve the environment.                             |
|              |                        | deterioration of lubricants                                  | Enhance the seals.                                   |
|              | 0                      | have been an <b>f</b> it of the st                           | Adopt adequate lubricant.                            |
|              | Creep                  | Improper fit, vibration, or                                  | Replace the bearing or repair                        |
|              |                        | impact loads                                                 | properly.                                            |
|              |                        |                                                              | Check the loads.                                     |

| Table 10-3 | Troubleshooting |
|------------|-----------------|
|------------|-----------------|

| Trouble                                                         |                                       | Cause                                                                                             | Countermeasure                                                                         |
|-----------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 7. Defect of<br>grease<br>lubricated<br>antifriction<br>bearing | Contact corrosion                     | Defective correction at the fit<br>parts<br>Elastic deformation due to<br>excessively large loads | Replace the bearing or repair<br>properly.<br>Check the loads.                         |
|                                                                 | Electrolytic corrosion                | Shaft current                                                                                     | Replace the bearing.<br>Clean the shaft current<br>preventive insulation.              |
|                                                                 | Damaged cage                          | Defective cage<br>Defective lubrication<br>Damage at mounting                                     | Replace the bearing.<br>Inject a suitable lubricant into<br>the cage riding clearance. |
| 8. Defect of oil<br>lubricated                                  | High temperature                      | Shortage of oil supply                                                                            | Check the oil level.<br>Fill with oil.                                                 |
| antifriction<br>bearing                                         |                                       | Defective lubricant,<br>inappropriate oil type, or<br>deterioration                               | Replace the lubricant.<br>Change the oil type.                                         |
|                                                                 |                                       | High room (water) temperature<br>Mixture of foreign substances                                    | Reduce the temperature<br>Check the route where the<br>foreign substances penetrate.   |
| 8. Irregular<br>detection of<br>ammeter                         | Early indication of the above trouble | Winding fault, bearing seizure,<br>breaking of wire, contact<br>failure, etc.                     |                                                                                        |

## 11. Replacement parts

Confirm that the renewal parts suits the original specification. Please contact us if there is an unclear point.




## Notice

■Use an equivalent device, when renewing accessories, such as a dial thermometer, thermocouple, etc., with which the bearing is equipped. Especially, since there is a case where an insulation tube is inserted to a temperature sensing element in order to prevent damage of the bearing from the shaft current, be sure to equip with the insulation tube in that case.

## 12. Disposal

When discarding a motor, we recommend asking to a special disposal company. Notify the following notes to them in that case.



## 13. Instruction of disassembly and reassembly

## 13.1 Horizontal motor with sleeve bearings

The disassembling and reassembling procedures of bracket type bearings may vary slightly according to the motor types, but typically they are executed as described below.

### 13.1.1 Preparation for disassembly

- (1) Thoroughly study the structure of the machine to be disassembled.
  - a) Make preparation for the disassembly procedure.
  - b) Prepare disassembly tools.
- (2) Carefully select the area for disassembly.
  - a) Avoid dusty areas.
  - b) Be careful of the weather when disassembling outdoor machines, and if necessary, bring them indoors.
- (3) Carefully clean the area around the bearings, including the shaft and the bearing housing.

## 13.1.2 Bearing disassembly procedure

- (1) Removing accessories
  - a) Remove the dial thermometer, thermocouple or other bearing temperature measuring devices.
  - b) Drain the lubricant from the bearing housing through the drain port by removing the plug.
  - c) Disconnect the oil feed pipe, if connected.
- (2) Removing bearing housing upper half (see Fig. 13-1, 13-2)
  - a) Remove clamping bolts ③ for bearing housing upper half ① and bearing upper half cover ②, and take off upper half cover ②.
  - b) Remove clamping bolts (5) for bearing housing upper half (1) and bearing housing lower half (4).
  - c) Lift the bearing housing upper half ① carefully and slowly, taking care to avoid fouling other components, and remove it. Especially, to prevent damage to the floating seals during disassembly, when lifting the bearing housing upper half ①, keep the bottom surface horizontal at all times. Since the non-drive end side bearing is normally provided with an insulator to prevent shaft current, pay attention to it during disassembly and reassembly. In addition, take care to keep this area free from contamination by foreign matter that may allow current at all times.

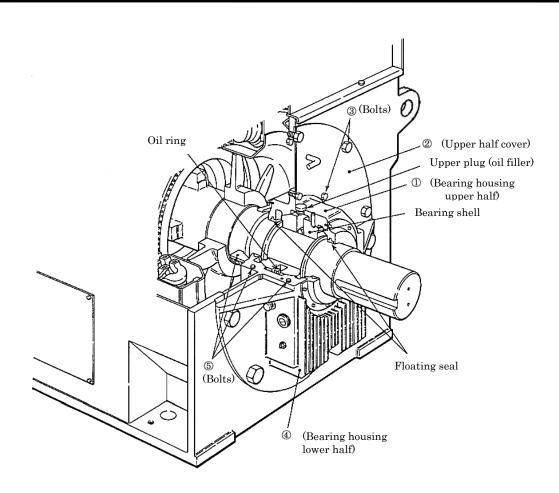



Fig. 13-1

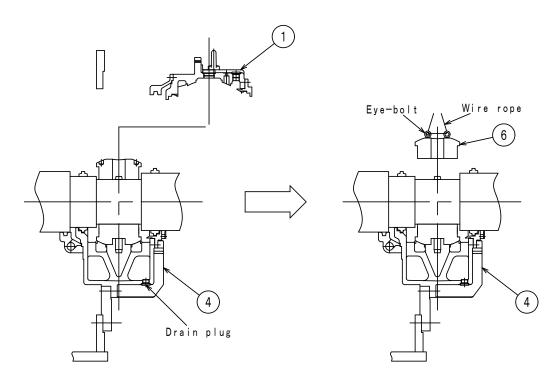





Fig. 13-3

- (3) Disassembly of bearing shell upper half (see Fig. 13-3)
  - a) Screw eye-bolts into bearing shell upper half (6).
  - b) Pass wire rope through the eye-bolts and lift the bearing shell upper half vertically. Take care not to damage the metal while removing the bearing shell, and be sure to place the removed bearing shell on protective wood blocks, not directly on the floor.
  - c) Move the bearing shell slowly, and absolutely avoid crash drop.
- (4) Disassembly of oil ring (see Fig. 13-4)
  - a) Rotating the joint to the top, and then remove the joining screws from oil ring  $\overline{\mathcal{O}}$ .
  - b) Take out oil ring  $\bigcirc$  from the journal.

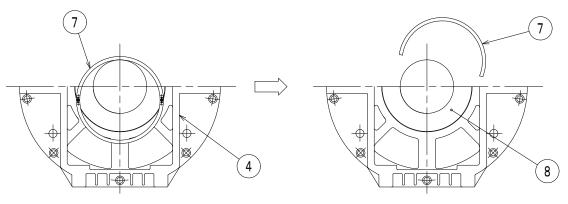
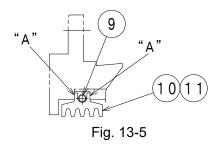
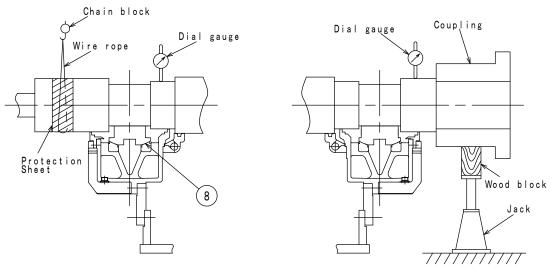



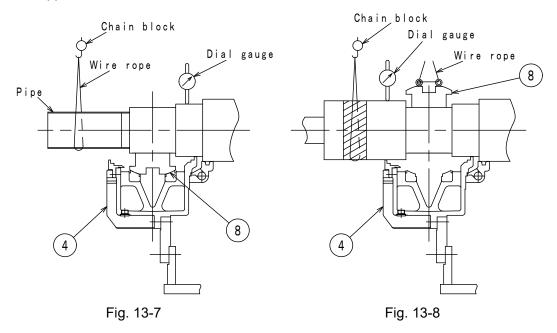

Fig. 13-4


- (5) Disassembly of floating seal (see Fig. 13-5)
  - a) Unlock garter spring (9), and take out upper half (10) of floating seal.
  - b) Rotate floating seal lower half ①to the top position, and remove it.
     When taking out the floating seals, pay attention to prevent damage.



- (6) Disassembly of bearing shell lower half (see Fig. 13-6, 7, 8)
  - Synchronize the disassembly procedures on both the drive end and non-drive end sides.
  - a) Lift up the rotor within the limit that can remove bearing shell lower half (8). In this procedures, take care to avoid the contact of the air gap between the rotor and the stator. The allowable lifting limit is 0.5 mm.

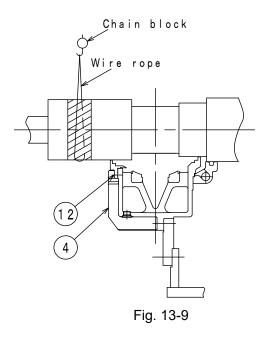
Example of rotor lifting method


- i) Jacking up the drive end side coupling.
- ii) Lift the shaft end of the non-drive end side with a fine-adjustable chain block, applying wire rope to the shaft end over a protection sheet.





As the other method, there is the case that the non-drive end side also be jacked up as shown in i), or when the shaft is not extended, there is the case that a pipe is inserted into the shaft end and this pipe is lifted with a wire rope (see Fig. 13-7).


- iii) This work must be executed with utmost care and attention, and must be entrusted by skilled workers.
- b) During lifting the rotor, rotate bearing shell lower half (8) to the top position of the shaft journal.
- c) Screw eye-bolts into bearing shell lower half (8), and take it out by lifting (see Fig. 13-8). Take utmost care in this procedure as same in the case of the bearing shell upper half.



(7) Disassembly of bearing housing lower half (see Fig. 13-9)

The bearing housing lower half is disassembled only when the rotor is pulled out.

- a) Remove the fastening bolts for seal carrier ① on the drive end side and on the non-drive end side.
- b) Set up eye-bolts into the screw holes of the lower half fastening the upper half and the lower half of the bearing housing, and hold the bearing housing by passing wire rope through the eyes, paying attention to the center of gravity location.
- c) Remove the bolts that are fastening the housing lower half to the stator frame.
- d) Lower or remove the bearing housing lower half not to prevent the rotor pulling-out. In general, since the rotor is pulled out to the opposite load side, lower the bearing housing lower half on the load side only enough to clear the coupling (the coupling flange outer diameter must be smaller than the stator core bore), and remove the bearing housing lower half on the opposite side to prevent damage to the collector, etc.
- e) Carefully lower the rotor by loosening the jack and the wire rope, and place the rotor on the stator core. In this procedure, lower the jack and the wire rope on both the load side and the opposite side simultaneously so as to avoid partial contact and impact to the core surface.



#### 13.1.3 Reassembly procedure

When reassembling the bearings, clean the all disassembled parts, and carefully avoid leaving any parts unassembled.

- (1) Reassembly of bearing housing lower half
  - a) Lift the rotor up 0.5 mm max., paying attention to the clearance of the air gap, as same in the case of the bearing housing lower half disassembly (Section 13.1.2(6)).
  - b) Locate the bearing housing lower half to its exact position, and fasten it to the stator frame. Remove the wire rope from the bearing housing.
- (2) Reassembly of bearing shell lower half
  - a) Wash the shaft with benzine or kerosine, and blow thoroughly with compressed air.
  - b) Apply bearing lubricant to the shaft.
  - c) Apply lubricant to the babbitt metal surface of the bearing shell lower half, and slide the shell to its position underneath the shaft.

- d) Align the mating surface of the bearing housing lower half with the mating surface of the bearing shell lower half using a stretch.
- e) Checking magnetic center gauge
   Confirm that magnetic center gauge (1) mounted to the bearing housing lower half on the drive end side is matched with the red reference line indicated on the shaft(see Fig. 13-10).
- f) Carefully lower the floating rotor and support it by the bearing shell lower half.
- g) Install the seal carrier that has been removed in Section 13.1.2(7), and make sure that their clearance with the shaft is correct by measuring with a thickness gauge.

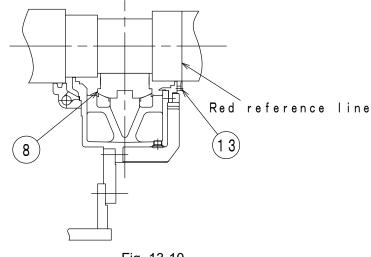



Fig. 13-10

(3) Reassembly of oil ring

Reassemble the two halves of the oil ring carefully avoiding wrong pairing. If wrong halves are assembled together, they don't fit well or may be elliptic, resulting in improper rotation. The joint of the rings should be within the surface of the ring sides.

- (4) Reassembly of bearing shell upper half
  - a) Screw eye-bolts into the bearing shell upper halves, and slinging them vertically with wire rope, reassemble them with the bearing shell lower halves. Align the match marks on the upper and lower bearing shell halves.
  - b) Thoroughly check that all the parts such as the anti-rotation pin are assembled in the bearing housing.
  - c) Check that not foreign objects such as tools and bolts are left in the bearing housing.
  - d) Be sure to apply oil seal to the mating surfaces of the housing to prevent oil leakage.
- (5) Reassembly of floating seal
  - a) Apply un-hardening compound (like ThreeBond 1121) or grease thinly on the peripheral side faces ("A" in Fig. 13-5) of the floating seal, and apply lubrication oil thinly on the bore of the floating seal.
  - b) Insert the floating seal lower half (with an oil drain hole) into the seal carrier and lower half by turning it. Make sure that the drain hole is facing inside the oil sump.
  - c) Install the floating seal upper half. Wound the garter spring around the floating seal, and lock it. Carefully align the upper and the lower halves of the floating seal to make their surfaces flush. After assembling, make sure it is free from jamming to be caused from deformation by turning it.
  - d) During reassembling the seal carrier upper half, confirm that the anti-rotation pin of the seal is properly secured in its groove.

(6) Reassembly of bearing housing upper half

## Notice

■In case of outdoor use, a sealing compound is applied to the machined connecting face.

Reassemble the bearing housing upper half by the reversing procedure as shown in Section 13.1.2(2).

- a) Install the dial thermometer, thermocouple or other bearing thermometer. In this case, appointed lube is poured into the measuring hole of the bearing.
- b) For a forced lubrication type bearing, reassemble the oil inlet and outlet piping. Fill lubricant up to the level indicated on the oil level gauge for self-cooled sleeve bearing.
- c) Confirm that the air gap is uniform around the entire circumference.
- d) For an outdoor type motor, coat sealant to the hatching part as shown in Fig. 13-11. With an outdoor type motor, be sure to coat sealant on the periphery areas shown in

Fig. 13, whenever disassembling.

Since the motor is already sealed with a sealant in all the required parts before shipping, the received new motor does not need disassembling and coating with a sealant to the machined surface between the lower bracket and the lower bearing housing and between the stator frame and the lower bracket.

\* Use the sealant of Three Bond 1208D or equivalent.

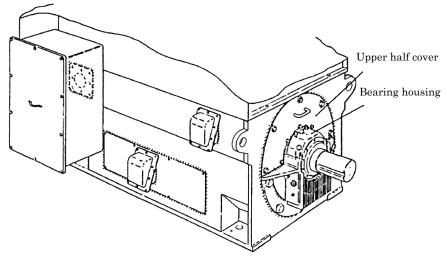



Fig. 13-11 Sealant coating area

## 13.2 Horizontal motor with antifriction bearing

Construction of antifriction bearings of a horizontal motor is shown in Fig. 13-12. Disassemble and reassemble the antifriction bearings as follows.

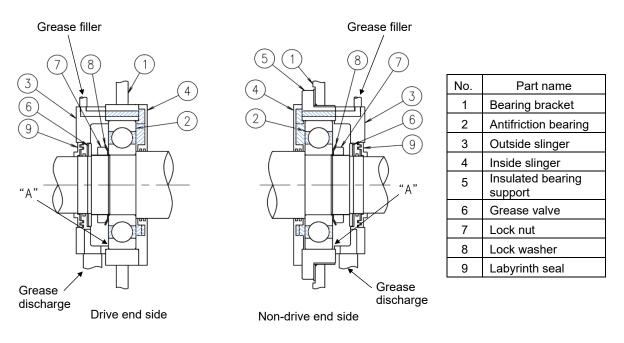



Fig. 13-12 Grease lubricated antifriction bearing structure

#### 13.2.1 Disassembly procedure

- (1) Disconnect the load machine from the motor.
- (2) Remove the thermometer and other accessories.
- (3) Remove the coupling.
- (4) Remove the parts in the bearing area, referring to Fig. 13-12. Take care not to damage the parts during removing.
- (5) Remove the bearing using a puller as shown in Fig. 13-13 or commercial rolling bearing puller. When pulling, heat the inner ring.

#### 13.2.2 Reassembly procedure

- (1) Preparation
  - a) Clean the reassembly area, bench, tools, etc. and hands, and prepare clean and lint-free cloth.
  - b) Check the fit surfaces of the shaft and the bearing housing for damage, rust, etc., chamfer the edge of the fit surface slightly, remove metal powder, dust, etc. completely, clean in benzene, and dry them.
  - c) When using a new bearing, unpack it only immediately before assembling, and install without washing.
  - d) Check the fit part dimensions for correct interference.

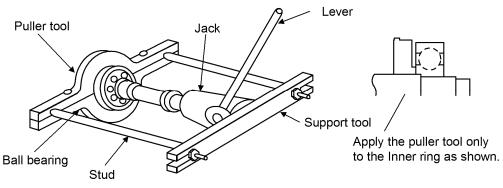



Fig. 13-13 Example of bearing pulling

#### (2) Insertion

Mount the bearing squarely with the side of engraved bearing number facing out, as follows:

| Notice                                               |  |
|------------------------------------------------------|--|
| ■In shrinkage fitting, uniform heating is important. |  |
| ■Never use a torch burner for heating.               |  |

Heat the bearing in oil at a temperature below 120°C. Since the bearing steel starts to get tempered at 150°C, take care not to heat the oil above 120°C. Take great care to keep the oil clean free from foreign matter by filtering. Where drying oven is available, heat the bearing sealed in a can, placing the can in the oven maintained at 100 to 120°C. After mounting the heated bearing on the shaft, finger-tighten the clamping nut, let the bearing cool to the room temperature, and then firmly tighten the nut at the room temperature.

#### 13.2.3 Replacement of bearings

When replacing the bearings, keep the following cautions:

- (1) Make sure that the types of replacing bearings are same as the ones in the bearing nameplate.
- (2) In mounting a bearing, always tightly fit to the shaft, and loosely fit to the housing, to avoid rolling member pressure concentration on small areas of the raceway, and to allow thermal expansion sliding. Too tight fit induces undue force in the raceway, and compression of the rolling elements may cause excessive wear and early destruction. Too slack fit causes slip under load, leading to erosion, loss of bearing function, and excessive short bearing life.

The fit classes for ordinary radial rolling bearings are as follows:

- b) Fit between bearing and shaft (Inner ring turning) Bearing bore tolerance·······Medium; See bearing maker's catalog. Shaft OD tolerance·······k5
- (3) After mounting a bearing, make sure that the nut locking washer tongue is firmly folded, and the washer is free from cracks.

- (4) After checking, cover the bearing area with clean paper or cloth to prevent dust entry.
- (5) Make sure the inner and outer bearing covers are tightly closed without space for dust entry.
- (6) Turn the rotor slowly to check for abnormal noise.
- (7) Grease injection

Fill the hatched area in Fig. 13-12 with grease. The space to be filled with grease includes the supply sector of the inside oil shield, 2/3 of the other sector, the feed route from the grease nipple, the bearing interior, and portion "A" in the drain area.

When reassembling the bearing after disassembling for periodical overhauling and replacing:

- a) Fill the bearing side of inside oil shield (4), and the inside of rolling bearing
  - 2 with grease
- b) Reassemble the bearing area
- c) Apply grease to portion "A"
- d) Install grease valve 6 and outside oil shield 3

The initial grease quantity is given on the bearing name plate. In injecting grease, take care not to allow foreign matter entry, and not to overfill to avoid heating.

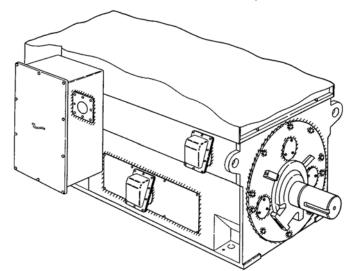
(8) For an outdoor motor, apply sealant after assembling the bearing area, as shown in Fig. 13-14.

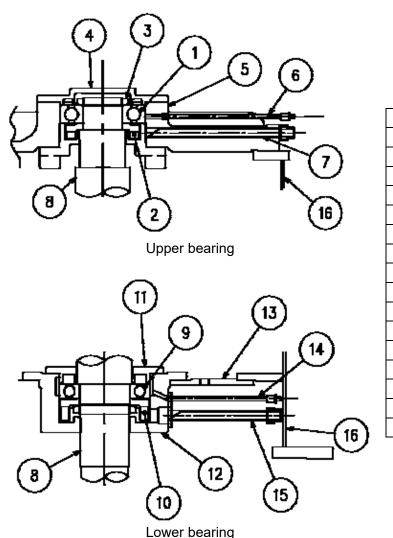
In case of an outdoor type motor, after disassembling for periodical overhauling, be sure to coat sealant on the peripheral areas shown in Fig. 13-14.

(Sealant coating areas are indicated by hatching.)

Since the motor is already sealed with sealant in all the required parts before shipping, the received new motor does not need disassembling and coating with a sealant.

\* Use the sealant of Three Bond 1208D or equivalent.





Fig.13-14 Sealant coating areas

## Notice

■Use an equivalent device, when renewing accessories, such as a dial thermometer, thermocouple, etc., with which the bearing is equipped. Especially, since there is a case where an insulation tube is inserted to a temperature sensing element in order to prevent damage of the bearing from the shaft current, be sure to equip with the insulation tube in that case.

## 13.3 Vertical motor with angular ball bearing

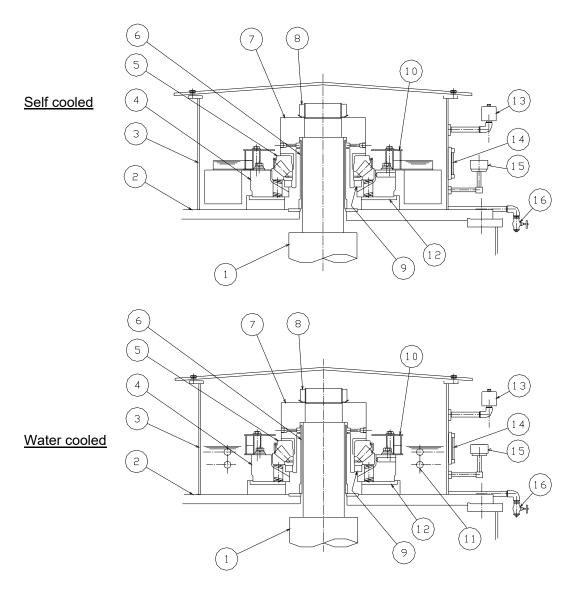
Disassembling and reassembling of a vertical motor with angular ball bearing at upper side should be as follows. Construction of bearings is shown in Fig. 13-15.



| No. | Name                  |
|-----|-----------------------|
| 1   | Angular ball bearing  |
| 2   | Grease runner         |
| 3   | Ring nut              |
| 4   | Bearing cover         |
| 5   | Upper bracket         |
| 6   | Grease feed pipe      |
| 7   | Grease discharge pipe |
| 8   | Shaft                 |
| 9   | Ball bearing          |
| 10  | Grease runner         |
| 11  | Bearing cover         |
| 12  | Bearing housing       |
| 13  | Lower bracket         |
| 14  | Grease feed pipe      |
| 15  | Grease discharge pipe |
| 16  | Frame                 |
|     |                       |

Fig. 13-15 Bearing construction

#### 13.3.1 Disassembly procedure


- (1) Uncouple the motor from the driven machine, and disconnect the power cable. Drain the lubricant for an oil bath type bearing.
- (2) Remove the accessories such as a temperature detector.
- (3) Remove the fan cover in case of TEAAC motor, and remove the air duct.
- (4) Move the motor to the disassembly area and set on side.
- (5) Remove the coupling in case of TEAAC motor, and remove the external fan.
- (6) Remove the upper and lower brackets.
- (7) Remove the upper bearing cover and lower bearing housing.
- (8) Remove the upper ring nut and lower grease runner.
- (9) Remove the bearing using a puller as shown in Fig. 13-13 or commercial rolling bearing puller. When pulling, heat the inner ring.

### 13.3.2 Reassembly procedure

Reassembly of the motor is accomplished by reversing the disassembly steps in Section 13.3.1. Refer to Section 13.2.2 and 13.2.3 for exchanging and reassembling the bearings. In case where the upper bearing is oil bath type, filling a grease to the bearing is unnecessary.

## 13.4 Vertical motor with spherical roller bearing

Disassembling and reassembling of a vertical motor with spherical roller bearing at upper side should be as follows. Construction of bearings is shown in Fig. 13-16. Since the lower bearing construction is the same as Fig. 13-15, refer to Section 13.3.



| No. | Name                     | No. | Name                            |
|-----|--------------------------|-----|---------------------------------|
| 1   | Shaft                    | 9   | Guide bearing                   |
| 2   | Upper bracket            | 10  | Oil scattering prevention cover |
| 3   | Oil reservoir            | 11  | Water cooling pipe              |
| 4   | Bearing seating          | 12  | Bearing insulation              |
| 5   | Spherical roller bearing | 13  | Air breather                    |
| 6   | Oil weir                 | 14  | Oil level gauge                 |
| 7   | Upper runner             | 15  | Overflow plug                   |
| 8   | Ring nut                 | 16  | Oil drainage valve              |

Fig. 13-16 Bearing construction

#### 13.4.1 Disassemble procedure

- (1) Uncouple the motor from the driven machine, and disconnect the cables for the power supply and the instruments.
- (2) In case of a water cooled type, drain the water in the piping and disconnect the piping.
- (3) Discharge the lubricant.
- (4) Remove the accessories such as a temperature detector.
- (5) Move the motor to the disassembly area and set on a maintenance stand.
- (6) Support the shaft end by jack.
- (7) Remove the lid of the oil reservoir.
- (8) Remove the ring nut for the upper runner.
- (9) Remove the oil scattering protection cover.
- (10) Heat the upper runner and remove it.
- (11) Remove the upper bracket.
- (12) Pull out the rotor from the stator using a lifting tool and lay it on another place.
- (13) Remove the lower bearing housing.
- (14) Remove the grease runner.
- (15) Remove the bearing using a puller as shown in Fig. 13-13 or commercial rolling bearing puller. When pulling, heat the inner ring.
- (16) Heat the inner ring of the spherical roller bearing and remove the bearing from the upper runner. Remove the bearing outer ring from the upper bearing seating.

#### 13.4.2 Reassembly procedure

Reassembly of the motor is accomplished by reversing the disassembly steps in Section 13.4.1. Refer to Section 13.2.2 and 13.2.3 for exchanging and reassembling the bearings. Since the upper bearing is oil lubricated type, filling a grease to the bearing is unnecessary.

## 14. Supplementary knowledge for maintenance inspection

## 14.1 Starting duty

The standard allowable starting duty for each squirrel-cage induction motor is specified to enable the concerned motor to start rotation twice consecutively under the state in which the motor is cooled to the ambient temperature or enable it to start rotation once after operation at the rated load.

When the motor starts, it receives a high level of thermal and mechanical stress as a result of starting currents and electromagnetic vibrations. Therefore, if a frequency of at least four starts per day is planned, it is necessary to use a motor for frequent starts.

## 14.2 Temperature rise limit

#### 14.2.1 Allowable temperature rise

In case the reference ambient temperature is  $40^{\circ}$ C, the limits of temperature rise standardized in IEC60034-1:2010 become as shown in the following Table 14-1. (Since the value may vary for other standards, refer to the specific standard applicable for details.)

|      | Part of induction machine                                                                                          |                                                                      | Thermal class 130(B) Thermal class 15 |                   | 155(F)      | 55(F) Thermal class 180(H) |                    |             |            |                    |
|------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|-------------------|-------------|----------------------------|--------------------|-------------|------------|--------------------|
| ltem |                                                                                                                    |                                                                      | Resistance                            | ETD               | Thermometer | Resistance                 | ETD                | Thermometer | Resistance | ETD                |
|      | Stator windings                                                                                                    |                                                                      |                                       |                   |             |                            |                    |             |            |                    |
|      | a. 5000kW or more                                                                                                  | —                                                                    | 80                                    | 85 <sup>(1)</sup> | _           | 105                        | 110 <sup>(1)</sup> | —           | 125        | 130(1)             |
|      | b. 200kW < Output < 5000kW                                                                                         | —                                                                    | 80                                    | 90 <sup>(1)</sup> | _           | 105                        | 115 <sup>(1)</sup> | —           | 125        | 135 <sup>(1)</sup> |
| 1    | c. 200kW or less, except d, e $^{(2)}$                                                                             | —                                                                    | 80                                    | —                 | _           | 105                        | —                  | —           | 125        | —                  |
|      | d. Less than 600W $^{(2)}$                                                                                         | —                                                                    | 85                                    | —                 | _           | 110                        | —                  | —           | 130        | —                  |
|      | e. Self-cooled w/o fan <sup>(2)</sup>                                                                              | —                                                                    | 85                                    | —                 | _           | 110                        | —                  | —           | 130        | —                  |
| 2    | Magnetic cores and all structural<br>components (other than bearings)<br>whether or not in contact with insulation | I he temperature rise or the temperature shall not be detrimental to |                                       |                   |             |                            | ntal to            |             |            |                    |

Table 14-1 Limits of temperature rise of air-cooled induction machines (IEC60034-1:2010) (Unit: K)

Notes (1) For adjustment for high voltage windings: See item 4 of Table 9 in IEC60034-1:2010.

(2) With the application of the supersosition test method of windings of machines rated at 200kW or less with thermal classes 130(B) and 155(F), the limits of temperature rise given for the resistance method may be exceeded by 5K.

The insulation degradation for the winding of the induction machine is mainly caused by heat and local discharge. As other deteriorating factors, mechanical fatigue, pollution, and absorption of moisture should be considered.

The windings cause early insulation degradation and the motor life is proportionately shortened when the motor temperature rise remains higher than the limit of temperature rise allowable by fouling of the air duct.

#### 14.2.2 Recommended setting values of temperature

Our recommended temperature settings of alarm etc. are listed in Table 14-2 for reference.

| Meas            | ured points and condi | Alarm  | Trip |     |
|-----------------|-----------------------|--------|------|-----|
| Stator windings | 5000kW or more        | B rise | 125  | 135 |
|                 |                       | F rise | 150  | 160 |
|                 |                       | B rise | 130  | 140 |
|                 | Less than 5000kW      | F rise | 155  | 160 |
|                 | Sleeve bearing        |        | 95   | 100 |
| Bearings        | Antifriction bearing  |        | 100  | 105 |

Table 14-2 Recommended setting values of temperature (Unit: °C)

However, the maximum temperature at operation may be much less than the recommended value of Table 14-2 due to a surrounding environment, a service condition, etc. In such a case, in order to find the abnormalities of a motor at an early stage, consider the alarm value to be set up in approximately the highest operating temperature  $+10^{\circ}$ C. In addition, it is also important to check by trend management that there is no unusual temperature change, and when abnormalities are observed, plan the precision inspection as early as possible.

## 14.3 Insulation resistance

The insulation resistance is an important value for checking the reliability of the insulation. The insulation resistance changes depending on the motor output, voltage, speed, insulation class, temperature, moisture, degree of pollution on insulator surface, test voltage, and duration of test voltage applied, etc. Thus, it is very difficult to judge from the insulation resistance only whether the reliability of the motor is high or not. There are no clear standards concerning what the insulation resistance should be.

However, we have set the following values as reference.

Stator Winding

 1000V or more : More than 100 [MΩ]
 Less than 1000V : More than 5 [MΩ]
 Space heater More than 1 [MΩ] The measurement of the insulation resistance should be carried out at the motor terminals for the stator winding and rotor winding. For the stator windings, use a 500V megger when the rated voltage is 600V or less, and use a 1,000V megger when it exceeds 600V.

Further, the value after the voltage is applied for one minute should be used as the measured insulation resistance. At this time, it is also important to record the measured winding temperature.

As reference, the insulation resistance secured in our factory is generally as follows.

Stator winding More than 300 [M $\Omega$ ]

## 14.4 Vibration

Each motor is sufficiently balanced in our factory. But vibration may increase, when directly coupled with the driven machine, under the influences of insufficient coupling accuracy, vibration caused by the driven machine or the installed condition on the foundation or base.

Excessive vibration possibly incurs fatigue failure of the shaft, bearings, core, windings, etc., and may cause insulation trouble, destruction of the foundation, etc. It is very important, therefore, to maintain and monitor each motor so that its vibration is kept within allowable range.

#### 14.4.1 Allowable vibration values

IEC60034-14 defines that "the rated voltage and the rated frequency are used to perform no-load operations and the vibration velocity at this time is measured." Moreover, ISO 10816-3 defines the vibration control value at site. Based on these, we recommend the values in Table 14-3 as a control value of the vibration velocity on the bearing housing at site.

|              | Recommended control value |
|--------------|---------------------------|
| Target value | 4.5 [mm/s r.m.s.]         |
| Alarm value  | 5.6 [mm/s r.m.s.]         |
| Trip value   | 8.9 [mm/s r.m.s.]         |

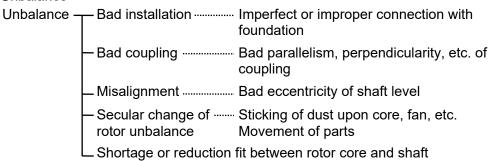
# Table 14-3Recommended control values of vibration velocity on a bearing housing<br/>(on a massive foundation)

On the other hand, a vibration amplitude is conventionally used in many cases, and the recommended values of the vibration amplitude are shown in Table 14-4.

|              |                                                                       |        | Mounting   | 2P | 4P | 6P or<br>more |
|--------------|-----------------------------------------------------------------------|--------|------------|----|----|---------------|
|              |                                                                       | 50 Hz  | Horizontal | 20 | 25 | 30            |
|              | Motor solo run                                                        | 50 HZ  | Vertical   | 25 | 30 | 35            |
|              |                                                                       | 60 Hz  | Horizontal | 20 | 25 | 30            |
| Target velue |                                                                       | 00 HZ  | Vertical   | 25 | 30 | 35            |
| Target value | At rated load<br>operation after<br>coupling with a<br>driven machine | 50 Hz  | Horizontal | 30 | 50 | 50            |
|              |                                                                       |        | Vertical   | 35 | 55 | 55            |
|              |                                                                       | 60 Hz  | Horizontal | 26 | 42 | 50            |
|              |                                                                       |        | Vertical   | 30 | 45 | 55            |
|              |                                                                       | 50 LI- | Horizontal | 37 | 62 | 62            |
| Alarm value  | At rated load operation after                                         | 50 Hz  | Vertical   | 43 | 68 | 68            |
|              | coupling with a driven machine                                        | 60 Hz  | Horizontal | 32 | 52 | 62            |
|              |                                                                       |        | Vertical   | 37 | 56 | 68            |

| Table 14-4 | Recommended control values of vibration amplitude o | n a bearing housing |
|------------|-----------------------------------------------------|---------------------|
|            | (on a massive foundation)                           | (Unit: µm(p-p))     |

These allowable values are target or recommended values of vibration based on experience, and they are variable depending on the installed condition. When the vibration exceeds the recommended alarm value, investigate the cause of vibration and take a suitable countermeasure, referring to Sections 14.4.2 and 14.4.3


#### 14.4.2 Cause of vibration

The following cases must be taken into consideration as the cause of vibration.

- (1) Mechanical vibration
  - (1)-1 Vibration with constant amplitude

The following cases, when the amplitude doesn't change at any time under the constant speed and voltage, are taken into consideration.

- a) Frequency of the rotational speed
  - i) Unbalance



- ii) Bending of shaft
- iii) Insufficient rigidity or resonance of structural members Resonance with structural members or excessive vibration due to poorly installed foundation
- iv) Metallic contact with stationary parts (such as bearing, etc.) The direction of whip is opposite to the rotating direction
- v) Unbalance of air gap caused by eccentricity of rotor The vibration is increased by electromagnetic force whenever voltage is induced
- b) Frequency of twice the rotational speed
  - i) Bearing is deformed elliptically
  - ii) The fit between rotor core and shaft is insufficient in a specific direction
- (1)-2 Vibration with changeable amplitude

The following cases, when the amplitude change with time under the constant speed and voltage, are taken into consideration.

a) Frequency of the rotational speed

The countermeasure, as it is complex phenomena with vibration caused under the influence of thermal factor, is very difficult. It is very important to classify the causes and characteristics systematically.

Bending troubles of shaft caused by heating are as follows:

- i) Bending of shaft caused by thermal expansion of rotor conductors
- ii) In the case of vibration caused by thermal factor when labyrinth seal is contact lightly with the shaft or bearing is contact in a specific direction, the vibration phase often changes. Especially, the change of the phase, in case of the latter, becomes periodically.
- b) Frequency not related to the rotational speed
  - i) Oil whip

Oil whip caused under the influence of oil film in the bearing becomes a large vibration. The whirling speed is nearly equal to the critical speed of the rotor, and the whirling direction agrees with the rotation one. The vibration is generated when the rotational speed reaches twice or more as high as the critical speed. Oil whip is generated easily in proportion to the smaller eccentricity of the bearing.

ii) Oil whirl

Although the above oil whip causes a large vibration, there is, on the other hand, a phenomenon that vibrates at 1/2 frequency of the shaft speed even if the shaft rotates at low speed. This is called oil whirl. Like oil whip, the whirling direction agrees with the rotational one, and it is generated easily in proportion to the smaller eccentricity of the bearing.

(2) Electrical vibration

This vibration occurs as a result of mechanical resonance caused by electromagnetic force.

a) Twice of the power supply frequency

The vibration is caused by unbalance of air gap, unbalance of source voltage, unbalance of stator winding, or looseness of stator core, etc.

b) Multiples of the power supply frequency
 It is caused by deforming force on radical direction of the stator core generated as
 the result of a bad slot combination.

c) Twice of the slip frequency

It is caused by magnetic unbalance generated as the result of unbalance of air gap on 2 pole motor, looseness of rotor core, or break of rotor bar.

d) Beat (sound)

A beat coinciding with the frequency, which is the number of poles times slip (example: twice of slip frequency in 2 pole motor), may occur as the result of unbalanced air gap and the slip.

#### 14.4.3 Investigating the causes of increased vibration

A vibration investigation of possible cause needs to carry out with insight systematically. Generally, the investigation should be carried out in the following procedure.

- (1) Classify the causes into electrical and mechanical ones. Turn off the power source, and investigate how the vibration changes. If the vibration is ascribable to electrical causes, it will disappear.
- (2) Check whether the vibration is due to the driven machine. Disconnect the driven machine, and check the motor alone.
- (3) Measure the change of vibration frequency, amplitude and phase.
- (4) Check whether the amplitude changes with time.
- (5) Check the alteration of the amplitude when the rotational speed changes, to judge whether the vibration is caused as the result of resonance or not.
- (6) Check the vibration with reference to the alteration of lubricant temperature, temperature of motor inside, bearing temperature, etc. and also check the shaft behavior.
- (7) Arrange the data to analyze the cause of vibration.

## 14.5 Noise

Typical causes of motor noise generation are described in the following Table 14-5.

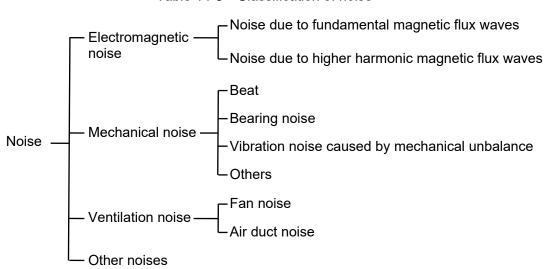



Table 14-5 Classification of noise

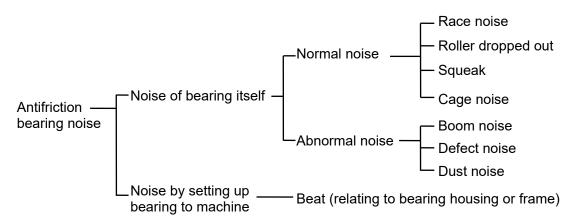
(1) Electromagnetic noise

Electromagnetic noise is caused when magnetic flux in the air gap between the stator and rotor is transmitted to the stator core, frame, or rotor. Electromagnetic noise is easily discriminable from noise caused by mechanical force since it immediately stops when the power supply to the motor was disconnected.

- a) Noise caused by fundamental waves of magnetic flux Electromagnetic noise comprises noise whose frequency is twice as high as the supply frequency. This noise is amplified when the air gap length, magnetic circuit or primary voltage becomes unbalanced. Thus, when this noise becomes excessive, it is
- b) Noise caused by higher harmonics of magnetic flux
   Main causes of this noise are the force based on higher harmonics of magnetic flux ascribed to slot combination. Usually, this noise frequency is 1,000Hz or more.
- c) Beat sound

necessary to check the air gap, etc.

This noise is caused by the unbalance on the secondary resistor, or the eccentricity or deformation of the rotor. The frequency is twice as high as the slip frequency. When this noise is caused, it is necessary to check the rotor.


#### (2) Mechanical noise

Mechanical noises are classified into bearing noise and stator resonance noise.

a) Bearing noise

Bearings are generally classified into sleeve bearing and anti-friction bearing. Noise isn't caused by the sleeve bearing unless it has a large gap in the radical direction.

Noise caused by the anti-friction bearing is complex. Main causes of anti-friction bearing noise are shown in Table 14-6.



#### Table 14-6 Causes of antifriction bearing noise

Among these, race noise (basic noise having the frequency of 1,000Hz or more), roller dropped out noise and squeak are classified as normal. The remainders are referred to as abnormal.

Typical of abnormal noises is defect noise.

Defect noise is caused by defects on the raceways or rolling elements. The noise frequency becomes higher in proportion to the motor speed or the number of rolling elements.

It is necessary to replace the bearing if defect noise is found.

b) Vibration noise caused by mechanical unbalance

If the balance of the rotor was disturbed, the motor generates vibration noise at the equivalent frequency to the number of revolutions because of excessive force acting on the bearing. The frequency caused by this phenomenon in generally low; thus, it is no problem as the motor noise.

#### (3) Ventilation noise

Ventilation noise usually has a uniform spectrum over a wide frequency range, and it also contains unique frequencies concerned with the number of fan blades, the number of ducts, etc.

a) Fan noise

Fan noise is governed by the shape and speed of the fan. Generally, fan noise becomes larger as the speed and size of the fan becomes higher and larger.

i) Noise caused by rotation of fan

This noise is caused as the fan blades give the impact by pressure on air periodically. The fundamental frequency is equal to the product given by multiply the number of blades by the speed.

ii) Vortex noise caused by fan blades

There is a pressure gradient across the fan blades, and the air flow makes a vortex. The noise caused by vortices usually has a uniform spectrum over a wide frequency range.

b) Duct noise

When the stator and rotor have air ducts in the radial directions, the relative movement of the stator and rotor slots in the circumferential direction generates compressional waves at the inlet and outlet of the air duct, causing the so-called siren effect. This frequency is usually high, and its fundamental frequency is equal to product given by multiply the number of ducts by the speed.

## 14.6 Influence of power supply variation

IEC 60034-1 describes about a voltage and frequency that a machine shall be capable of performing its primary function (rated torque) continuously within zone A in Fig.14, and shall be capable of performing its primary function within zone B but may exhibit greater deviations than zone A. Although deviation of a temperature rise or performances is permitted except a rating point, it is no problem, in practice, to use the motor within these ranges. Influences of fluctuations on motor characteristics are shown in Table 14-7.

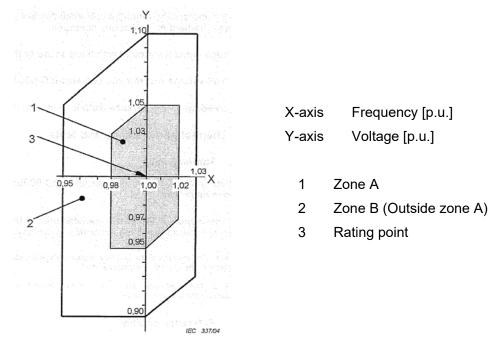



Fig. 14-1 Voltage and frequency limits for motors

| Table 14-7 | Example of influences | of characteristics on | motor with regard to th | e fluctuations |
|------------|-----------------------|-----------------------|-------------------------|----------------|
|            |                       |                       | motor with rogard to th | o nuotuutiono  |

|                       | Locked<br>rotor and<br>max. torque | Synchro-<br>nous speed | %<br>slip                      | Full load<br>speed | Full load<br>current | Locked rotor<br>current | Temp.<br>rise at full<br>load | Magnetic<br>noise at no<br>load |
|-----------------------|------------------------------------|------------------------|--------------------------------|--------------------|----------------------|-------------------------|-------------------------------|---------------------------------|
| For voltage var       | iation                             |                        |                                |                    |                      |                         |                               |                                 |
| 110% voltage          | (+)21%                             | Unchanged              | (-)17%                         | (+)0.4%            | (-)7%                | (+)10<br>∼20%           | (-)3<br>∼4%                   | (+) slightly                    |
| Function of voltage   | (Voltage) <sup>2</sup>             | Constant               | $\frac{1}{(\text{Voltage})^2}$ | _                  |                      | (Voltage)               | _                             |                                 |
| 90% voltage           | (-)19%                             | Unchanged              | (+)23%                         | (-)0.5%            | (+)11%               | (-)10<br>∼12%           | (+)10<br>∼15%                 | (-) slightly                    |
| For frequency \       | ariation                           |                        |                                |                    |                      |                         |                               |                                 |
| 105%<br>frequency     | (-)5%                              | (+)5%                  | Practically unchanged          | (+)5%              | (-) slightly         | (-)5<br>∼6%             | (-) slightly                  | (-) slightly                    |
| Function of frequency | 1<br>(Frequency)                   | (Frequency)            | _                              | _                  | _                    | 1<br>(Frequency)        | _                             | _                               |
| 95% frequency         | (+)5%                              | (-)5%                  | Practically unchanged          | (-)5%              | (+)<br>slightly      | (+)6<br>∼7%             | (+)<br>slightly               | (+)<br>slightly                 |

## 14.7 Influence of unbalanced voltage in power source

(1) Definition of the voltage unbalance ratio

Generally, the voltage and current unbalance ratio are expressed as follows.

Voltage unbalance ratio = 
$$\frac{\text{Negative phase sequence voltage}}{\text{Positive phase sequence voltage}} \times 100$$
 (%)  
Current unbalance ratio =  $\frac{\text{Negative phase sequence current}}{\text{Positive phase sequence current}} \times 100$  (%)

- (2) Influences of unbalanced voltage of the power source
  - a) When the motor is operated with unbalanced voltage, the current for each phase will be shown in Fig. 14-2. With unbalanced voltage, the input will increase while the output, torque and efficiency will decrease.

As is obvious from Fig. 14-2, the phase carrying the larger current may be overheated extremely, namely, the life of its winding will be short, and at the same time the power cost will be high as the result of increased loss. In addition, if the unbalanced voltage is large, there is danger of increasing the vibration or noise.

b) An extreme case of unbalanced voltage is one line fault. In this case, the full-load slip rises to about twice against the value under three-phase-running, and the line current rises to more than  $\sqrt{3}$  times against the value under three phases running. Avoid running the motor for long periods under such a condition, because the winding may burn out.

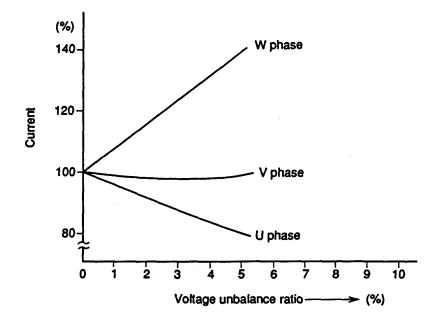



Fig. 14-2 Each phase current affected by unbalanced voltage (example)

## Appendix 1 Conditions at acceptance

| Date       | : |
|------------|---|
| Company    | : |
| Name       | : |
| Contact to | : |

| Rating of the motor (generator)    | kW           | Р       | V         | Hz         |        |      |
|------------------------------------|--------------|---------|-----------|------------|--------|------|
| Serial No. (in rating nameplate)   |              |         |           |            |        |      |
| Received date                      |              |         |           |            |        |      |
| Date of acceptance inspection      |              |         |           |            |        |      |
| Package condition                  | Wooden crate | Awnir   | ng sheet  | Other(     |        | )    |
| Existence of damage                | Yes (Package | Body    | Spare pa  | arts Tools | Other) | / No |
| If there is damage,                | With photos  | / Withc | out photo |            |        |      |
| Carrier                            |              |         |           |            |        |      |
| Contact to carrier                 | Done / No    | t yet   |           |            |        |      |
| Contact to shipping agency         | Done / No    | t yet   |           |            |        |      |
| Contact to insurance company       | Done / No    | t yet   |           |            |        |      |
| Condition of damage<br>(in detail) |              |         |           |            |        |      |
| Other points being noticed         |              |         |           |            |        |      |

## Appendix 2 Check sheet for installation

Ratings of the motor (generator) kW(kVA) P V Hz

Hz Date

Serial No. (in rating nameplate)

Inspector

| No. | Item                      | Description                      | Criteria                                     | Result |
|-----|---------------------------|----------------------------------|----------------------------------------------|--------|
| 1   | Place of installation     | Decemption                       | Ontoria                                      | rtooun |
| ·   | 1)Circulation path of     | Installation space, Direction of | Exhaust air does not flow to inlet.          |        |
|     | exhaust air               | exhaust port                     | No ventilation obstruction                   |        |
|     | 2)Disassembly and         | Disassembly and reassembly       | Reservation of workspace, and                |        |
|     | reassembly space          | place, and carrying-out route    | carrying-out route                           |        |
|     | 3)Use of crane            | Existence of crane or beam       | Installation and carrying-out is possible    |        |
|     | 4)Environment of          | Existence of gas, moisture,      | Environment shall be matched to              |        |
|     | <sup>'</sup> installation | water, and foreign substance     | specification                                |        |
| 2   | Foundation                |                                  |                                              |        |
|     | 1)Foundation bolt         | Height, slope, and pitch         | Installation of base is available.           |        |
|     |                           |                                  | Dimension check with outline drawing.        |        |
|     | 2)Stiffness               | Stiffness of foundation, and     | To withstand static and dynamic load         |        |
|     |                           | natural frequency                | To detune natural frequency                  |        |
| 3   | Installation              |                                  |                                              |        |
|     | 1)Level of base           | Level of axial and               | Within 0.05mm/1m                             |        |
|     |                           | perpendicular direction          |                                              |        |
|     | 2)Position of             | Relation between bolts and       | Bolts shall not contact to holes             |        |
|     | foundation bolt hole      | position of base hole            |                                              |        |
|     | 3)Liner margin            | Adjustment margin by liners      | 2mm and above                                |        |
|     | , .                       | Direction and position of wiring | Check with outline drawing                   |        |
|     | piping                    | and piping                       |                                              |        |
|     | 5)Transport protective    | Removal of transport             | Check if there is abnormal sound during      |        |
|     | device                    | protective device.               | hand turning                                 |        |
|     | 0) <del>-</del>           | Supply oil to journal            |                                              |        |
|     | 6)Temporary centering     | Parallelism and eccentricity     | Within ±0.5mm                                |        |
| 4   | Grouting                  |                                  |                                              |        |
|     | 1)Grouting margin and     | Grouting margin                  | Check if the grouting under sole plate is    |        |
|     | area<br>2)Foundation bolt | Tightness of holts               | enough.                                      |        |
| 5   | Alignment                 | Tightness of bolts               | To be tighten them after grouting            |        |
| 5   | 1)Runout of coupling      | Deviation of eccentricity        | Within the values in Table 4-2               |        |
|     | 2)Alignment of axial      | Movement of axial direction      |                                              |        |
|     | direction                 | (for sleeve bearing)             | No contact of shaft to side of bearing metal |        |
|     | 3)Alignment of            | Deviation of eccentricity and    | Within the values in Table 4-2               |        |
|     | eccentricity and          | parallelism                      |                                              |        |
|     | parallelism               |                                  |                                              |        |
|     | 4)Soft feet               | Clearance when loosening         | Within 0.1mm                                 |        |
|     | +)00111001                | each mounting bolt               |                                              |        |
|     | 5)Liner margin            | Liner adjusting margin           | 2mm and over                                 |        |
|     | 6)Fastening of bolt       | Confirmation of attached thick   | Check that thick washer is used.             |        |
|     | -,                        | washer                           |                                              |        |
|     |                           | Confirmation of tightening       | Tightening torque: Nm                        |        |
|     |                           | torque                           |                                              |        |
|     | 7)Counter mark of         | Confirmation of counter mark     | Counter mark shall be matched.               |        |
|     | coupling                  |                                  |                                              |        |

92

| No. | Item                                                   | Description                                     | Criteria                                           | Result |  |
|-----|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--------|--|
| 6   | Piping                                                 |                                                 |                                                    |        |  |
|     | 1)Connection of oil<br>feed and outlet pipe<br>flange  | No oil leakage from matching face               |                                                    |        |  |
|     | 2)Slope of oil outlet<br>pipe                          | Check of slope                                  | 1/30~1/50                                          |        |  |
|     | <ol> <li>Arrangement of oil<br/>outlet pipe</li> </ol> | Confirmation of drainage oil flow by sight flow | Drainage oil shall flow smoothly.                  |        |  |
|     | Record of alignment                                    |                                                 |                                                    |        |  |
|     | Eccentricity<br>(See page 22)<br>C:<br>D:              | A: G1: H1:                                      | Parallelism<br>(See page 23)<br>E1: G2: E2:<br>H2: |        |  |

## Appendix 3 Check sheet before trial run

Ratings of the motor (generator) kW(kVA) P V Hz

z Date

Serial No. (in rating nameplate)

Inspector

| No. | Item                                         | Description                                               | Criteria                                        | Result  |  |  |  |
|-----|----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|---------|--|--|--|
| 1   | Check of power source                        |                                                           |                                                 | 1 toout |  |  |  |
| •   | 1)Voltage                                    | Check of voltage: V                                       | Check with name plate                           |         |  |  |  |
|     | .)                                           | Voltage variation: $V \sim$                               | Within zone B in Fig. 14-1                      |         |  |  |  |
|     |                                              | V                                                         | 5                                               |         |  |  |  |
|     | 2)Frequency                                  |                                                           | Within zone B in Fig. 14-1                      | *       |  |  |  |
|     | 3)Power source for                           | Φ V Hz                                                    | Check with name plate                           |         |  |  |  |
|     | space heater                                 |                                                           |                                                 |         |  |  |  |
| 2   | Measurement of                               | According to Sec. 14.3                                    |                                                 |         |  |  |  |
|     | insulation resistance                        | Amb. temp.:°C, Relative humidity:%RH, Weather:            |                                                 |         |  |  |  |
|     | 1)Stator winding                             | MΩ @1000VDC - 1 min.                                      | 1000V or more : More than 100                   |         |  |  |  |
|     |                                              | Winding temp.:°C                                          | [MΩ], Less than 1000V∶More                      |         |  |  |  |
|     |                                              |                                                           | than 5 [MΩ]                                     |         |  |  |  |
|     | 2)Space heater                               | MΩ @500VDC - 1 min.                                       | 1 M $\Omega$ and over                           |         |  |  |  |
| 3   | Inspection of wiring                         |                                                           |                                                 |         |  |  |  |
|     | 1)Check of wiring                            | Connected terminal marking                                | Check with outline drawing                      |         |  |  |  |
|     | 2)Check of condition                         | Not fastened or loosened terminal                         | No abnormal fastening                           |         |  |  |  |
|     | of terminal bundle                           | Connection of CT secondary                                | Connection of CT secondary                      |         |  |  |  |
|     |                                              | terminal                                                  | terminal with instrument, or                    |         |  |  |  |
|     |                                              | Observed a superstinum of supervisions                    | short circuit                                   |         |  |  |  |
|     | 3)Inspection of                              | Check of connection of grounding<br>conductor             | Check with outline drawing or level             |         |  |  |  |
| 4   | grounding conductor<br>Inspection of bearing |                                                           |                                                 |         |  |  |  |
| 4   | 1)Antifriction bearing                       | Check of grease leakage                                   | No grease leakage                               |         |  |  |  |
|     | T/Antimotion bearing                         | Preparation of replenishment grease                       | Confirmation of grease                          |         |  |  |  |
|     |                                              | Grease type:                                              | Don't mix different greases                     |         |  |  |  |
|     |                                              | (Manufacturer: )                                          |                                                 |         |  |  |  |
|     | 2)Sleeve bearing                             | When rust preventive agent is                             | No rust preventive agent in the                 | 4       |  |  |  |
|     | , 0                                          | enclosed in the bearing housing,                          | housing                                         |         |  |  |  |
|     |                                              | discharge it from the drain plug.                         |                                                 |         |  |  |  |
|     |                                              | Supply lubricant oil (for self-lub)                       | Check with outline drawing or                   |         |  |  |  |
|     |                                              | Oil type:                                                 | name plate                                      |         |  |  |  |
|     |                                              | (Manufacturer: )                                          | Within indicated level of the oil               |         |  |  |  |
|     |                                              |                                                           | level gauge                                     |         |  |  |  |
|     |                                              | Check of oil leakage                                      | No oil leakage                                  |         |  |  |  |
|     |                                              | Confirmation of setting of orifice (for forced lub)       | Check with outline drawing                      |         |  |  |  |
|     |                                              | Check of lubricant oil (for forded-lub)                   | Check with outline drawing or                   |         |  |  |  |
|     |                                              | Oil type:                                                 | name plate                                      |         |  |  |  |
|     |                                              | (Manufacturer: )                                          |                                                 |         |  |  |  |
|     |                                              | Supplied oil pressure:MPa                                 |                                                 |         |  |  |  |
|     |                                              | Check of discharged oil flow by flow                      | Discharged oil shall flows                      | *       |  |  |  |
|     |                                              | sight                                                     | smoothly.                                       |         |  |  |  |
|     | <ol><li>Oil bath type</li></ol>              | When rust preventive agent is                             | No rust preventive agent in the                 |         |  |  |  |
|     | antifriction bearing                         | enclosed in the oil reservoir,                            | reservoir                                       |         |  |  |  |
|     |                                              | discharge it from drainage valve.                         |                                                 |         |  |  |  |
|     |                                              | Supply lubricant oil                                      | Check with outline drawing or                   |         |  |  |  |
|     |                                              | Oil type:                                                 | name plate                                      |         |  |  |  |
|     |                                              | (Manufacturer: )                                          | Within indicated level of the oil               |         |  |  |  |
|     |                                              | Chock of oil lookage                                      | level gauge                                     |         |  |  |  |
|     |                                              | Check of oil leakage<br>Check of cooling water (for water | No oil leakage<br>Check with outline drawing or |         |  |  |  |
|     |                                              | cooled)                                                   | name plate                                      |         |  |  |  |
|     |                                              | MPa,L/min, °C                                             |                                                 |         |  |  |  |

94

| 9 | 5 |
|---|---|
|   |   |
|   |   |

| No. | Item                                      | Description                                                    | Criteria                                    | Result |
|-----|-------------------------------------------|----------------------------------------------------------------|---------------------------------------------|--------|
| 5   | Heat exchanger<br>(CACW)                  |                                                                |                                             |        |
|     | 1)Check of flange<br>connection part      | Check of looseness of fastening bolt<br>Check of water leakage | No looseness of bolt<br>No water leakage    |        |
|     | 2)Confirmation of<br>cooling water        | MPa,L/min,°C                                                   | Check with outline drawing or<br>name plate |        |
| 6   | Others                                    | ☆Check by instant power source ON                              |                                             |        |
|     | 1)Confirmation of<br>rotational direction | Direction of rotation: CW / CCW (viewed from drive end side)   | Check with outline drawing                  |        |
|     | 2)Check of abnormal<br>sound              | Check of abnormal sound at bearing<br>or inside of motor       | No abnormal sound such as<br>contact noise  |        |
|     | 3)Check of abnormal<br>heat               | Check of abnormal smell                                        | No abnormal smell                           |        |
|     | 4)Oil ring (for sleeve<br>bearing)        | Check of oil ring rotation                                     | Oil ring shall rotate smoothly.             |        |

## Appendix 4 Check sheet at trial run

Ratings of the motor (generator) kW(kVA) P V Hz

Serial No. (in rating nameplate)

| 1<br>2<br>3<br>4<br>5<br>6<br>2<br>2<br>1<br>2 | <ul> <li>Motor solo run test</li> <li>1)Center gauge (for sleeve bearing)</li> <li>2)Power source</li> <li>3)Grease</li> <li>4)Abnormal sound</li> <li>5)Vibration</li> <li>6)Temperature</li> <li>Coupled test (at no oad)</li> <li>1)Center gauge (for sleeve bearing)</li> <li>2)Oil ring (for sleeve bearing)</li> </ul> | Date:, Inspector:<br>Relative humidity:%RH, Weathe<br>Check of position of center gauge<br>Check of three phase voltage<br>balance<br>Check of current pulsation<br>Supply grease at rotation<br>Check of abnormal sound at bearing<br>or inside of motor<br>Unit: mm/s(rms) or µm(p-p)<br>DE bearing H/V:<br>NDE bearing H/V:<br>Stator winding:°C<br>DE/NDE bearing:°C/°C<br>Date:, Inspector:<br>Relative humidity:%RH, Weathe<br>Check of position of center gauge             | r:, Water temp.:°C<br>Start the motor after matching<br>the rotor to the center gauge.<br>Three phase voltage shall be<br>balanced.<br>No current pulsation<br>Grease-up acc. to name plate<br>No abnormal sound such as<br>contact noise<br>Refer to Section 14.4.1<br>Refer to Section 14.2.2<br>, Amb. temp.:°C<br>r:, Water temp.:°C |   |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2<br>3<br>4<br>5<br>2<br>2<br>1<br>2<br>1<br>2 | sleeve bearing)         2)Power source         3)Grease         4)Abnormal sound         5)Vibration         6)Temperature         Coupled test (at no oad)         1)Center gauge (for sleeve bearing)         2)Oil ring (for sleeve                                                                                       | Relative humidity:%RH, Weathe         Check of position of center gauge         Check of three phase voltage         balance         Check of current pulsation         Supply grease at rotation         Check of abnormal sound at bearing         or inside of motor         Unit: mm/s(rms) or µm(p-p)         DE bearing H/V:         NDE bearing H/V:         Stator winding:°C         DE/NDE bearing:°C/°C         Date:, Inspector:         Relative humidity:%RH, Weathe | r:, Water temp.:°C<br>Start the motor after matching<br>the rotor to the center gauge.<br>Three phase voltage shall be<br>balanced.<br>No current pulsation<br>Grease-up acc. to name plate<br>No abnormal sound such as<br>contact noise<br>Refer to Section 14.4.1<br>Refer to Section 14.2.2<br>, Amb. temp.:°C<br>r:, Water temp.:°C |   |
| 2<br>3<br>4<br>5<br>2<br>2<br>1<br>2<br>1<br>2 | sleeve bearing)         2)Power source         3)Grease         4)Abnormal sound         5)Vibration         6)Temperature         Coupled test (at no oad)         1)Center gauge (for sleeve bearing)         2)Oil ring (for sleeve                                                                                       | Check of position of center gauge<br>Check of three phase voltage<br>balance<br>Check of current pulsation<br>Supply grease at rotation<br>Check of abnormal sound at bearing<br>or inside of motor<br>Unit: mm/s(rms) or µm(p-p)<br>DE bearing H/V:<br>NDE bearing H/V:<br>NDE bearing H/V:<br>Stator winding:°C<br>DE/NDE bearing:°C/°C<br>Date:, Inspector:<br>Relative humidity:%RH, Weather                                                                                   | Start the motor after matching<br>the rotor to the center gauge.<br>Three phase voltage shall be<br>balanced.<br>No current pulsation<br>Grease-up acc. to name plate<br>No abnormal sound such as<br>contact noise<br>Refer to Section 14.4.1<br>Refer to Section 14.2.2<br>, Amb. temp.:°C                                             |   |
| 3<br>4<br>5<br>6<br>2<br>1<br>1<br>2           | 2)Power source<br>3)Grease<br>4)Abnormal sound<br>5)Vibration<br>6)Temperature<br>Coupled test (at no<br>oad)<br>1)Center gauge (for<br>sleeve bearing)<br>2)Oil ring (for sleeve                                                                                                                                            | balance<br>Check of current pulsation<br>Supply grease at rotation<br>Check of abnormal sound at bearing<br>or inside of motor<br>Unit: mm/s(rms) or µm(p-p)<br>DE bearing H/V:<br>NDE bearing H/V:<br>Stator winding:°C<br>DE/NDE bearing:°C/°C<br>Date:, Inspector:<br>Relative humidity:%RH, Weather                                                                                                                                                                            | Three phase voltage shall be<br>balanced.<br>No current pulsation<br>Grease-up acc. to name plate<br>No abnormal sound such as<br>contact noise<br>Refer to Section 14.4.1<br>Refer to Section 14.2.2<br>, Amb. temp.:°C<br>er:, Water temp.:°C                                                                                          |   |
| 4<br>5<br>2 C<br>1c<br>1<br>2                  | <ul> <li>4)Abnormal sound</li> <li>5)Vibration</li> <li>6)Temperature</li> <li>Coupled test (at no oad)</li> <li>1)Center gauge (for sleeve bearing)</li> <li>2)Oil ring (for sleeve</li> </ul>                                                                                                                              | Supply grease at rotation<br>Check of abnormal sound at bearing<br>or inside of motor<br>Unit: mm/s(rms) or µm(p-p)<br>DE bearing H/V: /<br>NDE bearing H/V: /<br>Stator winding:°C<br>DE/NDE bearing:°C/°C<br>Date:, Inspector:<br>Relative humidity:%RH, Weathe                                                                                                                                                                                                                  | Grease-up acc. to name plate<br>No abnormal sound such as<br>contact noise<br>Refer to Section 14.4.1<br>Refer to Section 14.2.2<br>, Amb. temp.:°C<br>er:, Water temp.:°C                                                                                                                                                               |   |
| 4<br>5<br>2 C<br>1c<br>1<br>2                  | <ul> <li>4)Abnormal sound</li> <li>5)Vibration</li> <li>6)Temperature</li> <li>Coupled test (at no oad)</li> <li>1)Center gauge (for sleeve bearing)</li> <li>2)Oil ring (for sleeve</li> </ul>                                                                                                                              | Supply grease at rotation<br>Check of abnormal sound at bearing<br>or inside of motor<br>Unit: mm/s(rms) or µm(p-p)<br>DE bearing H/V: /<br>NDE bearing H/V: /<br>Stator winding:°C<br>DE/NDE bearing:°C/°C<br>Date:, Inspector:<br>Relative humidity:%RH, Weathe                                                                                                                                                                                                                  | No abnormal sound such as<br>contact noise<br>Refer to Section 14.4.1<br>Refer to Section 14.2.2<br>, Amb. temp.:°C<br>er:, Water temp.:°C                                                                                                                                                                                               |   |
| 5<br>6<br>2 C<br>1<br>1<br>2                   | 5)Vibration<br>6)Temperature<br>Coupled test (at no<br>oad)<br>1)Center gauge (for<br>sleeve bearing)<br>2)Oil ring (for sleeve                                                                                                                                                                                              | or inside of motor<br>Unit: mm/s(rms) or µm(p-p)<br>DE bearing H/V:<br>NDE bearing H/V:<br>Stator winding:°C<br>DE/NDE bearing:°C/°C<br>Date:, Inspector:<br>Relative humidity:%RH, Weathe                                                                                                                                                                                                                                                                                         | contact noise<br>Refer to Section 14.4.1<br>Refer to Section 14.2.2<br>, Amb. temp.:°C<br>er:, Water temp.:°C                                                                                                                                                                                                                            |   |
| 6<br>2 C<br>1c<br>1<br>2                       | 6)Temperature<br>Coupled test (at no<br>oad)<br>1)Center gauge (for<br>sleeve bearing)<br>2)Oil ring (for sleeve                                                                                                                                                                                                             | DE bearing H/V:/<br>NDE bearing H/V:/<br>Stator winding:°C<br>DE/NDE bearing:°C/°C<br>Date:, Inspector:<br>Relative humidity:%RH, Weathe                                                                                                                                                                                                                                                                                                                                           | Refer to Section 14.2.2          , Amb. temp.:°C           er:, Water temp.:°C                                                                                                                                                                                                                                                           |   |
| 2 C<br>Ic<br>1                                 | Coupled test (at no<br>oad)<br>1)Center gauge (for<br>sleeve bearing)<br>2)Oil ring (for sleeve                                                                                                                                                                                                                              | Stator winding:°C<br>DE/NDE bearing:°C/°C<br>Date:, Inspector:<br>Relative humidity:%RH, Weathe                                                                                                                                                                                                                                                                                                                                                                                    | , Amb. temp.:°C<br>er:, Water temp.:°C                                                                                                                                                                                                                                                                                                   |   |
| lc<br>1<br>2                                   | oad)<br>1)Center gauge (for<br>sleeve bearing)<br>2)Oil ring (for sleeve                                                                                                                                                                                                                                                     | Date:,Inspector:<br>Relative humidity:%RH, Weathe                                                                                                                                                                                                                                                                                                                                                                                                                                  | er:, Water temp.:°C                                                                                                                                                                                                                                                                                                                      |   |
| 1                                              | 1)Center gauge (for<br>sleeve bearing)<br>2)Oil ring (for sleeve                                                                                                                                                                                                                                                             | Relative humidity:%RH, Weathe                                                                                                                                                                                                                                                                                                                                                                                                                                                      | er:, Water temp.:°C                                                                                                                                                                                                                                                                                                                      | 1 |
| 2                                              | sleeve bearing)<br>2)Oil ring (for sleeve                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                          | 1 |
|                                                | 2)Oil ring (for sleeve                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | To be rotated at center gauge position                                                                                                                                                                                                                                                                                                   |   |
| 0                                              | bearing)                                                                                                                                                                                                                                                                                                                     | Check of oil ring rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oil ring shall rotate smoothly.                                                                                                                                                                                                                                                                                                          |   |
| 3                                              | 3)Check of abnormal                                                                                                                                                                                                                                                                                                          | Check of abnormal sound at bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No abnormal sound such as                                                                                                                                                                                                                                                                                                                |   |
|                                                | sound                                                                                                                                                                                                                                                                                                                        | or inside of motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | contact noise                                                                                                                                                                                                                                                                                                                            |   |
| 4                                              | 4)Vibration                                                                                                                                                                                                                                                                                                                  | Unit: mm/s(rms) or µm(p-p)<br>DE bearing H/V:/<br>NDE bearing H/V:/                                                                                                                                                                                                                                                                                                                                                                                                                | Refer to Section 14.4.1                                                                                                                                                                                                                                                                                                                  |   |
| 5                                              | 5)Temperature                                                                                                                                                                                                                                                                                                                | Stator winding:°C<br>DE/NDE bearing:°C/°C                                                                                                                                                                                                                                                                                                                                                                                                                                          | Refer to Section 14.2.2                                                                                                                                                                                                                                                                                                                  |   |
| 3 C                                            | Coupled test (on load)                                                                                                                                                                                                                                                                                                       | Date:, Inspector:<br>Relative humidity:%RH, Weathe                                                                                                                                                                                                                                                                                                                                                                                                                                 | , Amb. temp.:°C<br>r: , Water temp.: °C                                                                                                                                                                                                                                                                                                  |   |
| 1                                              | 1)Staring                                                                                                                                                                                                                                                                                                                    | Starting time: s (at V)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Check with outline drawing                                                                                                                                                                                                                                                                                                               |   |
|                                                | 2)Abnormal sound                                                                                                                                                                                                                                                                                                             | Check of abnormal sound at bearing or inside of motor                                                                                                                                                                                                                                                                                                                                                                                                                              | No abnormal sound such as contact noise                                                                                                                                                                                                                                                                                                  |   |
| 3                                              | 3)Check of abnormal heat                                                                                                                                                                                                                                                                                                     | Check of abnormal smell                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No abnormal smell                                                                                                                                                                                                                                                                                                                        |   |
| 4                                              | 4)Oil ring (for sleeve<br>bearing)                                                                                                                                                                                                                                                                                           | Check of oil ring rotation                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oil ring shall rotate smoothly.                                                                                                                                                                                                                                                                                                          |   |
| 5                                              | 5)Lubricant oil                                                                                                                                                                                                                                                                                                              | Check of oil level (for self-cooled sleeve bearing)                                                                                                                                                                                                                                                                                                                                                                                                                                | Within indicated level of the oil level gauge                                                                                                                                                                                                                                                                                            |   |
|                                                |                                                                                                                                                                                                                                                                                                                              | Check of discharged oil flow by flow sight                                                                                                                                                                                                                                                                                                                                                                                                                                         | Discharged oil shall flows smoothly.                                                                                                                                                                                                                                                                                                     |   |
| 6                                              | 6)Vibration                                                                                                                                                                                                                                                                                                                  | Unit: mm/s(rms) or µm(p-p)<br>DE bearing H/V:/<br>NDE bearing H/V: /                                                                                                                                                                                                                                                                                                                                                                                                               | Refer to Section 14.4.1                                                                                                                                                                                                                                                                                                                  |   |
| 7                                              | 7)Temperature                                                                                                                                                                                                                                                                                                                | Stator winding:°C<br>DE/NDE bearing: °C/ °C                                                                                                                                                                                                                                                                                                                                                                                                                                        | Refer to Section 14.2.2                                                                                                                                                                                                                                                                                                                  |   |
| 4 N                                            | Notice                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                        | I |

## Appendix 5 Records during operation

Ratings of the motor (generator)kW(kVA)PVHz

Serial No. (in rating nameplate)

Inspector

%For a periodical log, fill in this form by using copy of this sheet.

| No. | . Item Record                                                                           |                  |             |                                          |                         |                       |                              |   |                               |                                                          |
|-----|-----------------------------------------------------------------------------------------|------------------|-------------|------------------------------------------|-------------------------|-----------------------|------------------------------|---|-------------------------------|----------------------------------------------------------|
| 1   | Power source Voltage:V, Freq                                                            |                  |             |                                          | quency:Hz               |                       |                              |   |                               |                                                          |
| 2   | Utility                                                                                 |                  |             | -                                        |                         |                       | ter q'ty:L/min, Pressure:MPa |   |                               | MPa                                                      |
|     |                                                                                         | Forced lub Oil q |             |                                          |                         | ty: <u> </u>          | nin                          |   |                               |                                                          |
| 3   | Exchange or replenishment records of lubricant                                          |                  |             |                                          |                         |                       |                              |   |                               |                                                          |
|     |                                                                                         |                  |             | ant type (ma                             | int type (manufacturer) |                       | Exchange or replenishment    |   | Q'ty of                       | supply [L or g]                                          |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | DE:                           | / NDE:                                                   |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | DE:                           | / NDE:                                                   |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | DE:                           | / NDE:                                                   |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | DE:                           | / NDE:                                                   |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | DE:                           | / NDE:                                                   |
| 4   | Operation                                                                               | n recor          | ds          |                                          |                         |                       |                              |   |                               |                                                          |
|     | Date                                                                                    | Amb.             | temp.<br>C] | (Water<br>cooled)<br>Water temp.<br>[°C] |                         | ed lub)<br>emp.<br>C] | Winding<br>temp.<br>[°C]     |   | aring temp.<br>DE/NDE<br>[°C] | Bearing vibration<br>DE/NDE<br>[mm/s(rms) or<br>µm(p-p)] |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | /                             | H: /<br>V: /                                             |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | _ /                           | H: /<br>V: /                                             |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | _ /                           | H: /<br>V: /                                             |
|     |                                                                                         |                  |             |                                          |                         |                       |                              | ] | _ /                           | H: /                                                     |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | _ /                           | H: /<br>V: /                                             |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | _ /                           | H: /<br>V: /                                             |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | /                             | H: /<br>V: /                                             |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | /                             | H: /<br>V: /                                             |
|     |                                                                                         |                  |             |                                          |                         |                       |                              | · | _ /                           | H: /<br>V: /                                             |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   | _ /                           | H: /<br>V: /                                             |
| 5   | Notices (Abnormal noise, oil leakage, water leakage, abnormal smell, ventilation, etc.) |                  |             |                                          |                         |                       | on, etc.)                    |   |                               |                                                          |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   |                               |                                                          |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   |                               |                                                          |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   |                               |                                                          |
|     |                                                                                         |                  |             |                                          |                         |                       |                              |   |                               |                                                          |
| 1   |                                                                                         |                  |             |                                          |                         |                       |                              |   |                               |                                                          |



TMEIC Corporation TOKYO SQUARE GARDEN, 3-1-1 Kyobashi, Chuo-ku, Tokyo 104-0031, Japan Tel: +81-3-3277-5511 Fax: +81-3-3277-5533 www.tmeic.co.jp